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a b s t r a c t

Generic supplier selection from the perspective of multi-criteria decision making (MCDM) methodolo-
gies including crisp, fuzzy and intuitionistic fuzzy analysis of decision matrices has received much
attention, but less so specifically for the gas and oil industry, and in terms of comparing performance of a
number of available techniques. A set of 30 criteria are identified for assessing supplier selection for
facilities and field development projects across the petroleum industry. Bidders are assessed in terms of
these criteria, with varying degrees of uncertainty and subjectivity, using linguistic scoring terms that are
then transformed into crisp and fuzzy numerical sets. Eight MCDM scoring methods are described
mathematically and applied to a facilities-procurement scenario in order to analyze a linguistic-
assessment matrix for five alternative bidders using the 30 recommended criteria. These scoring
methods are: linear; non-linear; the order of preference by similarity to an ideal solution (TOPSIS); Fuzzy
TOPSIS (with and without entropy weighting); and, intuitionistic fuzzy TOPSIS (IFT) with three alter-
native methods for calculating entropy weighting (We). Performance of the eight methods is assessed by
comparing calculated rankings for the five bidders in relation to the defined supplier selection scenario
for a base case and ten sensitivity cases. The results of the analysis suggest that entropy weightings
applied to fuzzy sets provide more consistent bidder selection, and led to the proposal of a new intui-
tionistic-fuzzy-TOPSIS-method-with-flexible-entropy-weighting method that enables the entropy weight-
ing scale to be tuned to suit the circumstances of specific scenarios using equation 30 to flexibly
normalize the entropy weighting scale.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Selecting suppliers, contractors and service providers through
competitive bidding processes is a critical activity for most oper-
ating gas and oil operating organizations. For large facilities pro-
jects, such as the components of engineering, procurement and
construction (EPC) contracts the value of the decisions involved on
individual contracts can reach billions of dollars, and frequently
involves value of hundreds of millions of dollars. Consequently,
making appropriate decisions, and justifying and documenting the
reasons for selecting a specific bidder rather than one of the
competing bidders, is a process high on the agenda of investors and
decision makers.

In fact supplier selection for large EPC-type and related
contracts is a multi-faceted and multi-dimensional process.
Although the bidders may be primarily bidding a price for supplies/
services to be provided in conjunction with a specified contract of
work package, typically there are multiple criteria, in addition to
the bid price, that are involved in accessing the suitability of specific
bidders to perform the work and associated with performing the
tasks required. These criteria are presented here and categorized to
establish the multi-criteria characteristics typically involved in
supplier selection in the gas and oil industries.

Significantly the criteria that require assessment associated
with such decisions range from those for which quantitative in-
formation is available to make objective comparisons among bid-
ders, to qualitative information associated with significant
uncertainties that typically involves subjective and/or speculative
assessment. Hence, decision-making techniques are required that
can incorporate quantitative, semi-quantitative and qualitative in-
formation, with varying degrees of associated uncertainty, and
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integrate them into a systematic, transparent and repeatable
process.

Multiple criteria and multiple bidders are just two dimensions
that need to be considered in the supplier selection decision-
making process. In addition, there are often multiple decision
makers, or analysts involved in the decision process. This is typi-
cally the case for large organizations (e.g. multi-disciplined de-
partments and divisions influencing the decisions) and joint
venture operations (i.e., assets where an operating company and
one to several non-operating partner companies with equity in-
terests all hold voting rights in major decisions associated with the
asset held). In fact, it adds two key dimensions to the decision-
assessment process: 1) different decision makers/analysts may
apply weights to the multiple criteria associated with the decision
differently; and, 2) based on voting rights or organizational struc-
ture the project operator may assign different levels of importance
to the criteria ranking of certain decision-makers/analysts in
formulating a combined-assessment on which the final decision is
to be made.

Multi-criteria decision making (MCDM) techniques suitable to
assess high-value supplier selection decisions need to take into
account all of the above dimensions and issues if they are to be
useful tools for gas and oil industry decision makers. MCDM anal-
ysis techniques include a range of well-developed and applied
methodologies, such as simple additive weighting (SAW) (e.g.,
Churchman et al., 1957; Chen, 2012; Memariani et al., 2009), ana-
lytic hierarchy process (AHP) (e.g., Saaty, 1980; Junior et al., 2014),
elimination and choice expressing reality (ELECTRE) (e.g., Roy, 1968;
Saracoglu, 2015), preference ranking organization method for
enrichment evaluations (PROMETHEE) (e.g., Behzadian et al., 2010;
Vetschera and Teixeirade Almeida, 2012) and the order of prefer-
ence by similarity to an ideal solution (TOPSIS) (e.g., Hwang and
Yoon, 1981; Hwang and Lin, 1987; Taylan et al., 2014; Yurdakul
and Ic, 2005), which is the focus of much of this study.

All of themethodsmentioned can be applied tomulti-discipline,
group-decision-making situations applied to complex issues
involving high levels of uncertainty. These MCDMmethods make it
possible to take into account different perspectives and decision
preferences of several distinct decision makers. Distance-based-
uncertainty techniques (e.g., TOPSIS) offer flexible tools for
MCDA, because they easily permit decision makers to alter the
criteria weights applied in the analysis, are relatively easy to
compute and facilitate the identification of the most critical
weights. Several studies have compared the performance of the
different MCDM methods applied to specific situations (recent
examples are: Thor et al., 2013 and Junior et al., 2014). Thor et al.
(2013) concluded that TOPSIS outperformed SAW, AHP and ELEC-
TRE methods when applied to plant maintenance design options
because of its structured consistency, ease of calculation and its
ability to handle large data sets. Junior et al. (2014) compared the
application of fuzzy AHP and fuzzy TOPSIS methods to supplier
selection and concluded that the Fuzzy TOPSIS method is superior
in terms of ease of operation and its ability to handle greater
numbers of criteria and suppliers and applying changes to criteria
assessments. It is for the above reasons that this study focuses upon
TOPSIS methods.

In this study various versions of the popular TOPSIS methodol-
ogies are used to evaluate the multi-dimensional supplier selection
scenario from an MCDM perspective, and compare their perfor-
mance with simple linear and non-linear summed scoring systems.
The fundamental concept of TOPSIS is to select the alternative that
has the shortest geometric distance from the “positive ideal” so-
lution and the longest geometric distance from the “negative ideal”
solution. It is, therefore, a distance-based uncertainty technique,
which can be made flexible in the way in which weights are
calculated (i.e. objective weights), combined with selective weights
in some cases, and applied to the multiple criteria involved (e.g.,
Hyde et al., 2005; Hyde and Maier, 2006). Shih et al. (2007)
demonstrated that TOPSIS could be readily extended to address
group decision making, which is relevant to supplier selection in
the gas and oil sector. For instance, in large organizations consid-
ering investment decisions associatedwith large projects, decisions
are rarely taken by isolated departments or individual decision
makers within that organization. It is more typical in practice for
such decisions to be made as a collaborative effort by a group of
decision makers, often with each decision maker contributing to
the group decision applying distinctive weights to the criteria un-
der consideration.

There are three clear types of MCDM methodologies commonly
applied: 1) those using only crisp numbers; 2) those applying fuzzy
numbers (Hsu and Chen,1996); and, 3) those applying intuitionistic
fuzzy sets (IFS) (Atanassov, 1999). Crisp numerical and verbal
scoring systems typically do not reflect accurately real-world sit-
uations and the subjectivity of human judgments, which involve
elements of vagueness, preferential biases, prejudice and general
uncertainty, i.e., circumstances best described mathematically in
terms of “fuzziness”. TOPSIS can also be readily combined with
fuzzy logic (i.e., fuzzy set theory, e.g., Zadeh, 1965, 1971; fuzzy
arithmetic, e.g., Keufmann and Gupta, 1991; Zimmermann, 1991) in
various ways to better reflect variable levels of uncertainty asso-
ciated with the criteria assessments (e.g., Deng, 1999; Majd et al.,
2014; Shapiro and Koissi, 2013). In addition to a conventional
fuzzy set approach, TOPSIS can also incorporate intuitionistic fuzzy
set (IFS) concepts, which are designed to provide more focus on
degrees of indeterminacy and vagueness.

Fuzzy and IFS TOPSIS methodologies typically vary in the way in
which criteria weights are calculated and applied. Weights can be
subjective (i.e., based on decision-maker preferences and subjec-
tive judgments) or objective (i.e., mathematically derived from the
numerical assessment information contained in the decision
matrices), or a combination of both. IFS TOPSIS methods facilitate
the combination of subjective and objective weights (Chen and Li,
2010) with the objective weights typically derived through the
calculation of “entropy”, i.e., not the term referred to in thermo-
dynamics, but a so-called measure of fuzziness defining the degree
of impression and vagueness contained within matrix data
(Shannon, 1948; De Luca and Termini, 1972). Fuzziness describes
the availability of less than perfect information caused by the
inability to distinguish clearly whether elements belong or do not
belong to a particular set. The calculated entropy measure should
reveal or clarify how far a fuzzy set is from a crisp set (i.e., a set of
non-fuzzy numbers) (Collan et al., 2015). De Luca and Termini
(1972) developed the probabilistic entropy concept proposed by
Shannon (1948) for non-probabilistic applications in fuzzy sets.
Szmidt and Kacprzyk (2001) proposed the IF entropy measure,
which is widely applied in IFS methods for calculating entropy-
based weights, and other measures developing their principles
are also applied (e.g., Vlachos and Sergiadis, 2007; Parkash et al.,
2008; Ye, 2010). The established IFS approach is to use the calcu-
lated entropy value to develop entropy-based weights with which
to adjust an IFS decision matrix. The general rule is that the better
an attribute/criterion can discriminate a set of data (i.e., the lower
its entropy value should be) the higher the entropy weight that set
of data should be allocated. Hence, there is an inverse correlation
between the calculated entropy value of a data set and the entropy-
based weight applied to that data. The lower the entropy weight
that is applied to an attribute/criteria, the lower the contribution
that attribute/criterionmakes to the decision selection (Wang et al.,
2007; Wang and Lee, 2009).

Various methodologies have been applied to supplier selection
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scenarios across a range of industries in recent years. For general
reviews of the variousMCDMmethods applied to supplier selection
scenarios see DeBoer et al. (2001) andWu and Barnes (2011). Jadidi
et al. (2008) and Shahanaghi& Yazdian (2009) proposed integrated
fuzzy TOPSIS methods to address supplier selection scenarios.
Kahraman et al. (2009) applied fuzzy TOPSIS to group decision
making in the selection of information system providers. Amiri
(2010) proposed a combined AHP and Fuzzy TOPSIS method for
oil field development project selection. Toloei Eshlaghy and
Kalantary (2011) proposed a modified TOPSIS method for supplier
selection. Tabar and Charkhgard (2012) suggested a Fuzzy TOPSIS
model, integrated with the analytical network process to provide
weights, for supplier selection and supply chain management de-
cisions. Junior et al. (2014) compared fuzzy TOPSIS and Fuzzy AHP
methods applied to supplier selection in the automotive production
chain, concluding that fuzzy TOPSIS performed better in scenarios
involving changing numbers of criteria and suppliers. Whereas,
Yazdani (2014) proposed an integrated AHP e Fuzzy TOPSIS
approach for green supplier selection in the automobile supply
chain. Rouyendegh and Saputro (2014) applied a fuzzy TOPSIS
model to address supplier selection for a fertilizer and chemical
company. These studies highlight that supplier selection is an
important issue spanning many industries and that addressing the
issue with MCDM methods including TOPSIS is a topical area of
research in which significant progress has been made in recent
years. Many of the findings established from such detailed case
studies described for a specific industry have more generic appli-
cations worthy of consideration by other industries, including gas
and oil.

Most of the studies cited in the previous paragraph propose a
methodology supported by a worked example, but do not conduct
detailed performance comparisons with other established MCDM
techniques, nor do they conduct sensitivity analysis on the impact
of applying different subjective and objective weightings to the
scenarios described. This study aims to address these issues as they
relate to supplier selection scenarios in the gas and oil industry.

This study applies linear, non-linear, TOPSIS, fuzzy TOPSIS and
IFS TOPSIS methodologies, with various entropy weighting calcu-
lations included in the latter three methods, to a supplier selection
scenario considering criteria relevant to an oil and gas facilities
development project. Comparisons, using sensitivity analysis
associated with importance weightings assigned to three decision
makers, are made among the eight MCDM methodologies
described in terms of their suggested rankings among five bidders.
The first three methods involve crisp numbers; the last five
methods involve fuzzy logic designed to capture uncertainty in the
analysis. In addition to the objective entropy weights two other
subjectiveweights are applied to the scenario: criteriaweights (Wc)
applied by three decisionmakers; importanceweights (Wg) applied
to the assessments of each of the decision makers in a integrated
analysis. Eight methodologies structured to incorporate Wc andWg
weighting flexibilities (with four also incorporating We weighting,
and five involving fuzzy logic to factor in uncertainty) are devel-
oped here and applied to the supplier selection scenario involving
five bidders and thirty criteria, assessed initially using simple lin-
guistic terms. It is a relatively straightforward process to translate
linguistic assessments into numerical, semi-quantitative scales, but
the selection of those scales is itself subjective and does influence
the ranking outcomes of the methodologies applied. The findings
lead to recommendations about how MCDM methodologies might
best be applied in relation to supplier selection scenarios in the gas
and oil industry and the application of a new intuitionistic-fuzzy-
TOPSIS-method-with-flexible-entropy-weighting methodology. The
novelty of the proposed methodology lies in the introduction of a
tuning capability to the derivation of the entropy weight scale via
the use of an S factor, and in the use of that S factor to provide
additional sensitivity analysis to decision ranking.

2. Supplier performance criteria relevant to the gas and oil
industries

There are many criteria that require consideration in a generic
supplier selection process, but there are a number of quite specific
criteria that are relevant to many international gas and oil and gas
procurements. Large EPC contracts for example often have the
attention of governments, regulators, communities and non-
governmental organizations, and perhaps, more so than many
other industries, need to include local content to satisfy local pro-
curement rules. Tables 1ae1c list 30 criteria considered relevant to
the specifics requirements of the industry. It would certainly be
possible to break these down this list further and/or add additional
points for consideration. However, for the purposes of comparing
methodologies, thirty criteria are considered adequate to identify
the multi-criteria nature of the supplier selection process.

The thirty identified criteria are referred to by numbers only in
the following analysis. Some general observations to make about
the criteria identified are:

1. Each supplier selection exercise may have unique geographic
and organizational factors that will result in modifications/ad-
ditions to the thirty criteria identified, A MCDM methodology
needs to be flexible enough to adjust the number of criteria to
suit project requirements.

2. Several of the criteria listed are hard, if not impossible, to
quantify accurately, e.g. local content, community relations,
willingness to share risk, etc. This dictates that a qualitative
assessment is required, at least as a starting point, for an
assessment to accommodate all of the criteria listed.

3. There is likely to be a significant amount of uncertainty associ-
ated with assessments of many of the criteria. Assessment and
scoring systems applying crisp numbers are unlikely to capture
that uncertainty in the analysis. The subjective and inadequate/
conflicting information available for some criteria and mixture
of qualitative and quantitative information can make it hard to
find and justify a “best choice” simply in terms of crisp numbers.
In this context the term “crisp” is used to refer to a single point
number, i.e., integer or real, that is not a fuzzy number, i.e., part
of a fuzzy set (e.g., Aliev et al., 2015; Buckley, 2005).

4. The decision process typically has to consider many strategic
and operational factors in addition to the criteria information,
e.g., organizational strategic objectives, constraints and avail-
ability of certain resources, which can further complicate the
decision-makers' task.

5. For most of the criteria higher outcomes mean better perfor-
mance, whereas for other criteria lower outcome means better
performance (i.e., criteria 1, 13, 24, 25 and 26 in Table 1). Certain
scoring systems and methodologies applied need to take ac-
count of such differences in criteria characteristics.
3. Bidders, decision makers, preferences and importance

For the comparison of MCDM methodologies a supplier selec-
tion scenario involving five competing bidders is considered here
(i.e., EPC1 to EPC5). An assessment of these five bidders, based on
the thirty criteria identified (Table 1) is conducted by three decision



Table 1a
Multiple criteria to consider for gas and oil industry supplier selection grouped into finance, reputation and local content categories.

Multiple criteria to consider for supplier selection in gas and oil facilities projects

Sector Criteria numbers Criteria details

Finance 1 Contract bid price/material costs
Finance 2 Supplier's/contractor's financial strength
Finance 3 Access to finance & financial guarantees (ECAs)
Finance 4 Payment schedule & credit terms
Finance 5 Retention payment & warranty terms
Reputation 6 Track record/reputation/professionalism
Reputation 7 Previous global experience
Reputation 8 Previous local experience & procurement compliance
Local focus 9 Local content (workforce/suppliers)
Local focus 10 Community/NGO relations and CSR
Local focus 11 Government (local & national) relations

Table 1b
Multiple criteria to consider for gas and oil industry supplier selection grouped into project management, supply chain and technical/engineering
categories.

Multiple criteria to consider for supplier selection in gas and oil facilities projects

Sector Criteria numbers Criteria details

Project management 12 Management and organizational framework
Project management 13 Work force turnover and experience
Project management 14 IT Software communication sophistication
Project management 15 Relationships/procurement with subcontractors
Supply chain 16 Logistics and supply base capabilities
Supply chain 17 Supply chain management
Supply chain 18 Equipment & resources availability
Technical/Engineering 19 Engineering and design expertise
Technical/Engineering 20 Access to appropriate technologies and patents
Technical/Engineering 21 Innovation/problem solving/flexibility

Table 1c
Multiple criteria to consider for gas and oil industry supplier selection grouped into risk mitigation and quality/performance categories. HSSE refers to
health, safety, security and environment.

Multiple criteria to consider for supplier selection in gas and oil facilities projects

Sector Criteria numbers Criteria details

Risk mitigation 22 Risk management & contingency planning
Risk mitigation 23 Willingness to share risk
Risk mitigation 24 Contract risk for sponsor
Risk mitigation 25 Time overrun risk
Risk mitigation 26 Cost overrun risk
HSSE 27 Safety, compliance & security record
HSSE 28 Environmental record
Quality/Performance 29 Quality control and standards
Quality/Performance 30 Operational plant reliability/handover expectation
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makers (i.e., DM1, DM2 and DM3). It is assumed that those three
decision makers weight the criteria differently (Table 2). Whereas,
DM1 weights all criteria equally (i.e. weight applied to each
criteria ¼ 1/30 ¼ 0.3333), DM2 weights criteria 1, 2, 6, 8 and 30 five
times higher than the other criteria (Table 2). On the other hand
DM3weights criteria 1, 3, 7, 9,11 and 29 at a higher level, criteria 10,
11, and 29 at an intermediate level, and the remaining criteria at a
low level. Hence, even if these three decision makers agree on the
assessment of each bidder in relation to a specific criterion, they
wish to apply different weightings collectively to those
assessments.

The supplier selection scenario also considers the importance
assigned to the assessment of bidder by applying additional
importance weighting factors. The base case scenario assumes
equal weightings (i.e., 1/3 ¼ 0.3333) applied to each decision
maker's assessment. However, sensitivity cases are evaluated in
which a range of unequal weightings, all summing to one, are
applied. From a calculation perspective this means that three
separate evaluations, one for each decision maker, are necessary,
with the final decision integrating those three evaluations into a
final assessment in such a way that the importance weightings are
applied.

4. Applying a linguistic assessment and converting it into
appropriate numerical scores

A simple five category linear scoring system is applied to the
supplier selection scenario considered. This is given in Table 3 along
with numerical scores that are to be applied by the MCDM meth-
odologies considered.



Table 2
Multiple criteria weightings applied by three different decision makers to a supplier selection scenario.

Distinct criteria weightings applied by three decision makers

Criteria numbers Criteria details Decision makers' criteria weightings

DM1 DM2 DM3

1 Contract bid price/material costs 0.0333 0.1000 0.1000
2 Supplier's/contractor's financial strength 0.0333 0.1000 0.0119
3 Access to finance & financial guarantees (ECAs) 0.0333 0.0200 0.1000
4 Payment schedule & credit terms 0.0333 0.0200 0.0119
5 Retention payment & warranty terms 0.0333 0.0200 0.0119
6 Track record/reputation/professionalism 0.0333 0.1000 0.0119
7 Previous global experience 0.0333 0.0200 0.1000
8 Previous local experience & procurement compliance 0.0333 0.1000 0.0119
9 Local content (workforce/suppliers) 0.0333 0.0200 0.1000
10 Community/NGO relations and CSR 0.0333 0.0200 0.0500
11 Government (local & national) relations 0.0333 0.0200 0.1000
12 Management and organizational framework 0.0333 0.0200 0.0119
13 Work force turnover and experience 0.0333 0.0200 0.0119
14 IT Software communication sophistication 0.0333 0.0200 0.0119
15 Relationships/procurement with subcontractors 0.0333 0.0200 0.0119
16 Logistics and supply base capabilities 0.0333 0.0200 0.0119
17 Supply chain management 0.0333 0.0200 0.0119
18 Equipment & resources availability 0.0333 0.0200 0.0119
19 Engineering and design expertise 0.0333 0.0200 0.0119
20 Access to appropriate technologies and patents 0.0333 0.0200 0.0119
21 Innovation/problem solving/flexibility 0.0333 0.0200 0.0119
22 Risk management & contingency planning 0.0333 0.0200 0.0119
23 Willingness to share risk 0.0333 0.0200 0.0119
24 Contract risk for sponsor 0.0333 0.0200 0.0119
25 Time overrun risk 0.0333 0.0200 0.0119
26 Cost overrun risk 0.0333 0.0200 0.0119
27 Safety, compliance & security record 0.0333 0.0200 0.0500
28 Environmental record 0.0333 0.0200 0.0500
29 Quality control and standards 0.0333 0.0200 0.1000
30 Operational plant reliability/handover expectation 0.0333 0.1000 0.0119

Totals: 1.0000 1.0000 1.0000

Notes to Table 2: (1) the weightings applied sum to one when all thirty criteria are considered in each case; (2) Priority criteria for decision makers DM2 and DM3 are
highlighted with a gray background.

Table 3
Simple linguistic variables used to initially assess each criterion for each bidder, and numerical equivalents assigned to those linguistic assessments.

Conversion of linguistic assessments into numerical equivalents

Linguistic terms use for assessment Symbols applied Assigned linear score Assigned nonlinear score Triangular fuzzy set Intuitionistic fuzzy
Set(IFS)

Low Central High m v p

Very poor VP 1 1 0.00 0.00 0.25 0.20 0.70 0.10
Poor P 2 2 0.00 0.25 0.50 0.30 0.60 0.10
Moderate M 3 5 0.25 0.50 0.75 0.45 0.35 0.20
Good G 4 8 0.50 0.75 1.00 0.60 0.30 0.10
Very good VG 5 10 0.75 1.00 1.00 0.80 0.10 0.10

Note to Table 3: The numerical equivalents assigned to the linguistic assessments are appropriate for the MCDMmethodologies applied and compared in this study, but other
scores could be applied.
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The simple linguistic system provides a good basis for initial
qualitative assessment. It also means that the criteria for which a
higher outcomesmeans a better performance can be assessed using
the same linguistic variable scale as the criteria for which a lower
outcome means a better performance (i.e., criteria 1, 13, 24, 25 and
26). For example, an assessment of “Poor” can mean a high-
expected outcome for criteria 13, or a low-expected outcome for
criteria 6. Table 4 details the linguistic assessment of each bid for
each criterion applying the linguistic scale defined in Table 3.

The MCDM scenario can be expressed in matrix format as
follows:
(1)

\raster="fx2"\fleqno \hbox{(1)}
where D is a decision matrix consisting of:

A¼{A1,A2,…An} a set of n alternative bidders,



Table 4
Linguistic assessment of supplier selection scenario defined (i.e., 5 bidderse EPC1 to
EPC5- and 30 criteria) using the linguistic scale defined in Table 3.

Linguistic assessment of supplier-selection criteria

Sector Criteria numbers Decision makers' assessments of
five EPC bidders

EPC1 EPC2 EPC3 EPC4 EPC5

Finance 1 M P G G VG
2 G M VG M G
3 M G M G P
4 P M VG VG G
5 P M VG VP G

Reputation 6 G G P M M
7 M VG VG P G
8 G G VP M M

Local focus 9 G M VG VG G
10 M P G G VG
11 G M VG G VP

Project management 12 G G P M M
13 M VG VP P G
14 VG G M VG P
15 P M VG VG G

Supply chain 16 M VG M P G
17 M P M G VG
18 G G P M M

Technical/Engineering 19 G G P M M
20 M VG G P G
21 M VG VP P G

Risk mitigation 22 P M VG VG G
23 M P VP G VG
24 VG G M VP P
25 M P VP G VG
26 VG G M VP P

HSSE 27 VG G M G P
28 P M VG G G

Quality/Performance 29 P M VP G VP
30 M P G VP M

Notes to Table 4: 1) One approach is to reach consensus such that all three decision
makers are in agreement concerning the linguistic assessments applied. In practice,
that agreement may not always be easy to achieve, and each decision maker may
have their own assessment matrix that needs to be integrated via importance
weightings. 2)As introduced in Table 3 the linguistic descriptors used to assess
supplier performance are abbreviated as follows: VP means “very poor”; P means
“poor”; M means “moderate”; G means “good”; and, VG means “very good”.
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C¼{C1,C2…Cm} a set of m criteria to assess the bidders
Wc¼{Wc1,Wc2…Wcm} a set of weights applied to the m criteria,
Wg¼{Wg1,Wg2…Wgl} a set of importance weights applied to the
assessments of l decision makers.

The supplier selection scenario and assessment is now defined
by three main dimensions:

n ¼ 5 bids/bidders to evaluate
m ¼ 30 criteria with which to assess the bids
l ¼ 3 decision makers conducting independent assessments of
the n bidders based on the information available for the m
criteria.

A fourth dimension influencing the final decision recommen-
dation is associated with the importance weight (Wg) applied to
each decision maker's assessment. Individual elements of the
criteria weights set (Wc) and the importance weights set add to 1.

The decision makers in this scenario agree on the linguistic,
qualitative assessments (Table 4) applied to each criteria for each
bidder, but not on the criteria weighting. Hence, there is just one
assessment matrix to evaluate in the case considered. In practice
there may be multiple assessment matrices to evaluate, but all the
methodologies described here can easily cope with that issue.
This scenario is evaluated and ranking of the bids is then
compared for six MCDMmethodologies, with pros and cons of each
method discussed. There are several other MCDM methodologies
that could also be applied to the supplier selection scenario, but the
ones considered are considered sufficient to explore the scenario
and highlight the issues to be addressed.
5. Simple linear and non-linear scoring methodologies using
crisp numbers

These appeal to decision makers because of their simplicity and
ease of calculation. It is also important to consider them for
comparative purposes, in order to justify using more complex/so-
phisticated methodologies capable of incorporating more infor-
mation. In these approaches the linguistic assessments are assigned
semi-quantitative numerical scores on linear or non-linear scales
(Table 3). In the linear approach used here VP ¼ 1, P ¼ 2, M ¼ 3,
G ¼ 4 and VG ¼ 5, whereas in the non-linear scales used here
VP ¼ 1, P ¼ 2, M ¼ 5, G ¼ 8 and VG ¼ 10 gives more weight to the
more positive assessments. These numbers can then be expressed
as matrices (Table 5), with totals of columns and rows to reveal
information that helps distinguish the bidders (i.e., sums of col-
umns) and the overall ability of all the bidders to satisfy the re-
quirements of individual criteria (i.e., sum of rows). In matrix
format sums of the columns is expressed as:

~Aj ¼
Xm
i¼1

xij; with i ¼ 1;…;m; j ¼ 1;…;n (2)

where:

~Aj is the sum of all the unweighted criteria scores for bidder j.

Of course, there amany other such scoring systems that could be
defined (e.g. VP ¼ �5, P ¼ �2.5, M ¼ 0, G ¼ þ2.5, VG ¼ þ5, giving
equal negative weight to the poorer assessment as positive weight
is given to the better assessments) depending upon the strategic
objectives of the analysts/decision makers in the bid assessment
process. the scale involving negative and positive numbers is not
evaluated further here.

The semi-quantitative scales are arbitrarily selected. They pro-
vide a numerical basis (i.e. matrices of crisp numbers) from which
to conduct mathematical calculations, but in no way represent a
quantitative analysis, or provide any indications of the un-
certainties associated with assessments from which they are
derived.

Taken at face value, with no additional weightings applied, the
sums of the columns in Table 5 can be used to rank the bidders with
the linear scores suggesting a descending ranking order:
EPC2> EPC5> EPC1> EPC4> EPC3; and, the non-linear scores
suggesting a descending ranking order: EPC5> EPC2> EPC1> EP-
C4> EPC3. In the scenario described the five bidders end up with
quite similar total scores. In cases, where one bidder has a much
higher total score than the others using such systems, it is probably
not necessary to go further and consider alternativemethodologies.
However, when there is little to discriminate between the bidders
using such assessments then relatively small adjustments (e.g.
application of weightings) and uncertainties can alter the rankings.

In addition to the sums of the columns, the sums of the rows in
Table 5 also provide some insight to the assessment. Criteria 9 (local
content) has the highest cumulative score (i.e., the sum of the 5-
bidders scores is 21 on the linear scale and 41 on the non-linear
scale), and criteria 2, 4, 7, 9, 14, 15 and 22 have higher cumulative
scores than other criteria. It is possible to also discriminate the



Table 5
Linear and non-linear scoring matrices derived by converting the linguistic assessment of the supplier selection scenario defined (i.e. 5 bidders eEPC1 to EPC5 and 30 criteria)
shown in Table 4 using the linear and non-linear scales defined in Table 3.

Linear and non-linear scoring matrices for supplier assessment evaluation

Sector Criteria numbers Decision makers' assessments linear scores Decision makers' assessments non-linear scores

EPC1 EPC2 EPC3 EPC4 EPC5 Sum linear EPC1 EPC2 EPC3 EPC4 EPC5 Sum non-linear

Finance 1 3 2 4 4 5 18 5 2 8 8 10 33
2 4 3 5 3 4 19 8 5 10 5 8 36
3 3 4 3 4 2 16 5 8 5 8 2 28
4 2 3 5 5 4 19 2 5 10 10 8 35
5 2 3 5 1 4 15 2 5 10 1 8 26

Reputation 6 4 4 2 3 3 16 8 8 2 5 5 28
7 3 5 5 2 4 19 5 10 10 2 8 35
8 4 4 1 3 3 15 8 8 1 5 5 27

Local focus 9 4 3 5 5 4 21 8 5 10 10 8 41
10 3 2 4 4 5 18 5 2 8 8 10 33
11 4 3 5 4 1 17 8 5 10 8 1 32

Project management 12 4 4 2 3 3 16 8 8 2 5 5 28
13 3 5 1 2 4 15 5 10 1 2 8 26
14 5 4 3 5 2 19 10 8 5 10 2 35
15 2 3 5 5 4 19 2 5 10 10 8 35

Supply chain 16 3 5 3 2 4 17 5 10 5 2 8 30
17 3 2 3 4 5 17 5 2 5 8 10 30
18 4 4 2 3 3 16 8 8 2 5 5 28

Technical/Engineering 19 4 4 2 3 3 16 8 8 2 5 5 28
20 3 5 4 2 4 18 5 10 8 2 8 33
21 3 5 1 2 4 15 5 10 1 2 8 26

Risk mitigation 22 2 3 5 5 4 19 2 5 10 10 8 35
23 3 2 1 4 5 15 5 2 1 8 10 26
24 5 4 3 1 2 15 10 8 5 1 2 26
25 3 2 1 4 5 15 5 2 1 8 10 26
26 5 4 3 1 2 15 10 8 5 1 2 26

HSSE 27 5 4 3 4 2 18 10 8 5 8 2 33
28 2 3 5 4 4 18 2 5 10 8 8 33

Quality/Performance 29 2 3 1 4 1 11 2 5 1 8 1 17
30 3 2 4 1 3 13 5 2 8 1 5 21
Total scores: 100 104 96 97 103 176 187 171 174 188

Note to Table 5: The criteria achieving the highest scores across all five bidders are highlighted with a gray background. The numbers in bold represent totals.
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criteriawith the lowest cumulative criteria scores in Table 5 (i.e.5, 8,
13, 21, 23, 24, 25, 26, 29 and 30 have cumulative linear scores of 15
or less), with criteria 29 (quality control) assessed with the lowest
linear score of 11. The other criteriawith intermediate scores (i.e., 16
to 18 on the linear scale) tend to have individual bidder scores
dominated by linear scores of 2, 3 and 4. Such analysis reveals
Table 6
Weighting adjustments to linear and non-linear scoring matrices for the supplier-select
places.

Linear and non-linear decision-makers' scoring assessments weighted for criteria prio

Linear scoring comparison Sum of criteria weighted (Wc) scores
for each decision maker

Sum of criteria w
maker

Bidder Unweighted total
score

DM1
(X � Wc)

DM2
(X � Wc)

DM3
(X � Wc)

DM1
(X � Wc � Wg)

EPC1 100 3.333 3.440 3.245 1.111
EPC2 104 3.467 3.280 3.343 1.156
EPC3 96 3.200 3.200 3.626 1.067
EPC4 97 3.233 3.060 3.638 1.078
EPC5 103 3.433 3.500 3.143 1.144

Non-linear scoring
comparison

Sum of criteria weighted (Wc) scores
for each decision maker

Sum of criteria w
decision maker

Bidder Unweighted total
score

DM1
(X � Wc)

DM2
(X � Wc)

DM3
(X � Wc)

DM1
(X � Wc � Wg)

EPC1 176 5.867 6.240 5.650 1.956
EPC2 187 6.233 5.740 5.881 2.078
EPC3 171 5.700 5.740 6.788 1.900
EPC4 174 5.800 5.400 6.862 1.933
EPC5 188 6.267 6.400 5.643 2.089
insight regarding which criteria are likely to be easily satisfied and
others not so easily satisfied by the supplier selection decision.

Table 6 shows the adjustments made to the column-totals of the
linear and non-linear matrices by applying the different weighting
schemes defined for the three decision makers (from Table 2), and
the importance weightings used to integrate the three-decision-
ion scenario defined in Tables 2e5. Weighted scores are rounded to three decimal

rities and importance

eighted (Wc) & importance-weighted (Wg) scores for each decision Rank
(1 ¼ best)

DM2
(X � Wc � Wg)

DM3
(X � Wc � Wg)

Fully weighted total
assesment

1.147 1.082 3.340 4
1.093 1.114 3.363 1
1.067 1.209 3.342 3
1.020 1.213 3.310 5
1.167 1.048 3.359 2

eighted (Wc) & importance-weighted (Wg) scores for each Rank
(1 ¼ best)

DM2
(X � Wc � Wg)

DM3
(X � Wc � Wg)

Fully weighted total
Assesment

2.080 1.883 5.919 5
1.913 1.960 5.951 4
1.913 2.263 6.076 2
1.800 2.287 6.021 3
2.133 1.881 6.103 1
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makers' scores (i.e., all 0.3333 in the base case) into a final assess-
ment and ranking. These simple weightings adjustments are
expressed in matrix format as:

pjk ¼
Xm
i¼1

xij �WcixWgk; with i ¼ 1;…;m; j ¼ 1;…n; k ¼ 1;…; l

(3)

where:

pjk is the sum of all the weighted criteria scores for bidder j with
importance weightings for decision maker k applied

ePj ¼ Xl

k¼1

pjk;; with j ¼ 1;…;n; k ¼ 1;…; l

where :ePj is the weight adjusted score for bidder j

(4)

Table 6 reveals that the application of the different criteria
weightings of the decision makers results in a modified ranking
order of bidders, with the weighted linear scores suggesting a
descending ranking order: EPC2> EPC5> EPC3> EPC1> EPC4; and,
the weighted non-linear scores suggesting a descending ranking
order: EPC5> EPC3> EPC4> EPC2> EPC1. From Table 6 it is
apparent that DM1 ranks#1 EPC2 (i.e., the same as the unweighted
ranking, because DM2 applies equal weighting to all criteria), DM2
ranks#1 EPC5 and DM3 ranks#1 EPC4, but also ranks EPC3 just
behind EPC4. This results in EPC3 moving significantly up the
rankings in the weighted analysis in comparison to its last-place
ranking in the unweighted analysis. The underlying reason for
these differences in the weighted-analysis rankings versus the
unweighted-analysis rankings is that more of the scores assigned to
the higher-weighted criteria are higher overall for EPC3 than the
other bidders (e.g., review the scores for criteria 30 e last row in
Table 4 e for which EPC3 scores better than the other bidders; note
that criteria 30 is one of only four criteria which DM2weights more
highly than other criteria, as identified in Table 2).

The remainder of this study focuses upon the application of
more sophisticated MCDM methodologies (i.e. different TOPSIS
calculations) to the supplier selection scenario described in order to
establishwhat additional information they can reveal and how they
might further help decision-makers to reach more credible rank-
ings and selections.
6. TOPSIS methodology using crisp numbers

The clear distinction between a TOPSIS methodology and the
simple linear and non-linear scoring approaches already described
is that TOPSIS is taking into account the distance of each criteria
assessment from both the positive ideal and negative ideal, with
the relative closeness (RC) index used for ranking maximizing the
distance from the negative ideal. The steps involved in conducting a
TOPSIS analysis are described concisely in numerous publications
(e.g. Krohling and Campanharo, 2011; Ghazanfari et al., 2014) so
will not be repeated in detail here except for the key mathematical
formulations required.

The decision matrix (i.e., equation (1)) requires normalization to
transform it into a dimensionless matrix. Dividing the matrix ele-
ments in each row (criteria) by the square root of the sum off the
squares of the elements of that row yields a normalized decision
matrix with normalized value elements of rij:
rij ¼
xijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 x

2
ij

q ; with i ¼ 1;…;m; j ¼ 1;…;n (5)

where R is the normalized decision matrix :
R ¼ �

rij
�
m�n; with i ¼ 1;…;m; j ¼ 1;…;n (6)

The normalized matrix is then adjusted by the criteria weights
(Wc) to yield a weighted matrix with Pij elements, by applying
equation (3), but excluding the importance weighting (Wg) ad-
justments at this stage.

The positive-ideal solution (Aþ) and the negative-ideal solution
(A�) can then be identified:

Aþ ¼
�
pþ1 ; p

þ
2 ;…; pþn

�
(7)

A� ¼
�
p�1 ; p

�
2 ;…; p�n

�
(8)

where:

pþi ¼ max
j

�
pij

�
; with i ¼ 1;…;m; j ¼ 1;…;n (9)

p�i ¼ min
j

�
pij

�
; with i ¼ 1;…;m; j ¼ 1;…;n (10)

With different scoring systems to the one used here (Tables 4
and 5) which involve absolute financial data for costs and bene-
fits, the positive-ideal solution for benefit criteria is the maximum
among the n bidders, and the positive-ideal solution for cost
criteria is theminimum among the n bidders. For the negative-ideal
solution the reverse is the case: the negative-ideal solution for
benefit criteria is the minimum among the n bidders, and the
negative-ideal solution for cost criteria is the maximum among the
n bidders. For the linguistic scoring system applied here equations
(9) and (10) suffice.

The Euclidian distance of each element in the normalizedmatrix
from the positive-ideal and negative-ideal solutions for each cri-
terion (i) is then calculated and summed for each bidder (j).

dþj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

�
pþi � pij

�2vuut with i ¼ 1;…;m; j ¼ 1;…;n (11)

d�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

�
pij � p�i

�2vuut with i ¼ 1;…;m; j ¼ 1;…;n (12)

where:
dþj is the Euclidian distance from the positive-ideal solution (Aþ)
d�j is the Euclidian distance from the negative-ideal solution
(A�)

In the case of distinct cost and benefit scoring systems absolute
Euclidian distances are calculated using equations (11) and (12) to
avoid the involvement of negative numbers. The summed Euclidian
distances for each alternative bidder are then used to calculate a
relative closeness index (RCj).

RCj ¼
d�j

dþj � d�j
; with j ¼ 1;…;n (13)

The magnitude of the relative closeness index is then used to
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rank the alternative bidders.
The bidder with the highest relative closeness index is ranked

#1 because they are, taking account of all the m criteria assessed,
farthest from the negative ideal solution and therefore closest to
the positive ideal solution.

Table 7 shows the results of a TOPSIS analysis based on the linear
numerical scoring matrix (Table 5) for the supplier selection sce-
nario defined in Tables 2e4 The different weighting schemes
defined for the three decision makers (from Table 2), and the
importance weightings used to integrate the three-decision-
makers' scores (i.e., all 0.3333 in the base case) into a final assess-
ment and ranking are applied.

The TOPSIS analysis presented here is conducted in two steps.
The first step involves separate TOPSIS analysis applying the
weightings of each decision maker. The second step involves
applying a second TOPSIS analysis using the RCj ratios for each
decision maker from the first step with the defined importance
weightings applied to each. The integrated RCg ratio calculated by
the second step then incorporates both criteria and importance
weightings.

Table 7 indicates that TOPSIS analysis using linear numerical
scores suggests EPC3 as the rank#1 bidder based upon the highest
-relative closeness ratio (RCg) taking into account the base case
criteria and importance weightings. A closer inspection of the
TOPSIS analysis from each decision-maker's perspective reveals
rankings that differ from the combined ranking, as follows: DM1
ranking is EPC5> EPC2> EPC1> EPC4> EPC3; DM2 ranking is
EPC5> EPC1> EPC3> EPC2> EPC4; and DM3 ranking is
dþj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

ð1=3Þ
��

paþi � paij
�2 þ �

pbþi � pbij
�2 þ �

pcþi � pcij
�2�vuut ; with i ¼ 1;…;m; j ¼ 1;…;n (14)

d�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

ð1=3Þ
��

paij � pa�i
�2 þ �

pbij � pb�i
�2 þ �

pcij � pc2i

��vuut ; with i ¼ 1;…;m; j ¼ 1;…;n (15)
EPC4> EPC3> EPC2> EPC1> EPC5. Note that none of the decision
makers independently ranks EPC3 at the top, even though the in-
tegrated analysis (applying equal importance weightings in the
base case of 0.3333 to each decision maker's assessment) ranks#1
EPC3.

A simple addition of the decision maker's RC indices (i.e., col-
umns 2 to 4 in Table 7) yields a ranking of EPC3> EPC5> EP-
C1> EPC4> EPC2, which selects the same rank#1 and rank#5 as
the integrated importance-weighted TOPSIS analysis, but differs in
the ranking order of the other bidders. A closer inspection of the
final four columns of Table 7 reveals that it is, in fact, the lower
Euclidean distance calculated from the positive ideal solution (i.e.,
Dgþ) that is responsible for EPC3 achieving the highest RCg index
in the TOPSIS analysis.

The three multi-criteria analysis methodologies applied so far to
the defined supplier-selection scenario (i.e. weighted-linear
ranking, weighted-non-linear ranking and TOPSIS) all involve
crisp numbers. They do not take into account the uncertainties that
are likely to be associated with the qualitative linguistic assess-
ments from which the numerical matrices involved in the analysis
are based.
7. Fuzzy TOPSIS methodology transforms crisp numerical
matrix into fuzzy sets

In order to introduce an element of uncertainty into the criteria
assessments for the supplier selection scenario the linguistic as-
sessments are converted into sets of triangular numbers applying
the zero to one scale illustrated in columns three to five in Table 3.
Triangular fuzzy numbers offer an effective way of capturing un-
certainty and subjectivity in MCDM (e.g., Kahraman et al., 2004).
Each assessment is then represented by a fuzzy number expressed
as a triplet of high, central and low numbers, defined here to be real
numbers that belong to the fuzzy set ~a [0,1]. Each triangle repre-
sents a defined set of overlapping numbers within that range with
an easy-to-calculate membership function m~a(x), as illustrated in
Fig. 1.

The same TOPSIS methodology using fuzzy numbers is applied
to the one described above using crisp numbers (i.e. equations
(3)e(13)), with the exception that the Euclidean distances to the
positive-ideal solution and negative-ideal solution use the vertex
method expressed as equations (14) and (15), instead of equations
(11) and (12), to extract crisp distances from the differences be-
tween the three elements of the fuzzy elements of the decision
matrix and the maximum and minimums established for the fuzzy
elements of each criteria.
where:

dþj is the Euclidian distance from the positive-ideal solution (Aþ)
d�j is the Euclidian distance from the negative-ideal solution
(A�)
a, b, c are the triplet of numbers constituting fuzzy number ~a

The fuzzy TOPSIS analysis is conducted in two steps similar to
the TOPSIS methodology. The first step involves three separate
fuzzy TOPSIS analysis applying the weightings of each decision
maker. The second step involves applying a basic TOPSIS analysis
using the RCj ratios (i.e., crisp numbers derived from equation (13))
for each decision maker derived from the first fuzzy TOPSIS step,
with the defined importance weightings applied to the RC ratios
calculated for each decision maker in step one. The integrated RCg



Table 7
Weighting adjustments to the TOPSIS analysis based upon the linear scoring matrices (Table 5) for the supplier-selection scenario defined in Tables 2e4 Weighted scores are
rounded to three decimal places.

Decision-makers' non-fuzzy TOPSIS assessments weighted for criteria priorities and importance

Non-fuzzy
TOPSIS linear
score

Criteria weighted (Wc)
relative closeness measures
for each decision maker

Sum of criteria weighted (Wc) &
importance weighted (Wg) relative
closeness measures for each decision
maker

Euclidian distance measures for integrated
analysis

Integrated TOPSIS analysis for Wc

and Wg weightings

Bidder DM1 (Wc

e RC)
DM2 (Wc

e RC)
DM3 (Wc

e RC)
DM1 (Wc &
Wg e RC)

DM1 (Wc &
Wg e RC)

DM1 (Wc &
Wg e RC)

Distance from
positive-ideal (Dgþ)

Distance from
negative-ideal (Dgþ)

Relative
closeness Index
(RCg)

Rank based on
RCg (1 ¼ best)

EPC1 0.527 0.600 0.458 0.176 0.200 0.153 0.507 0.511 0.502 2
EPC2 0.545 0.452 0.501 0.182 0.151 0.167 0.524 0.429 0.450 5
EPC3 0.493 0.554 0.579 0.164 0.185 0.193 0.441 0.516 0.540 1
EPC4 0.499 0.400 0.655 0.166 0.133 0.218 0.522 0.523 0.500 3
EPC5 0.547 0.618 0.431 0.182 0.206 0.144 0.523 0.523 0.500 4
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ratio calculated by the second step then incorporates both criteria
and importance weightings.

A triangular-fuzzy-set-scoring system is applied here (Fig. 1) to
the linguistic assessments of the defined supplier-selection sce-
nario (Table 3) in evaluating the fuzzy-TOPSIS methodology. Table 8
presents the key results of the fuzzy-TOPSIS analysis using defined
fuzzy-set-scoring system (Table 3, Fig. 1) applied to base case as-
sumptions for the defined supplier selection scenario. The results
suggest reasonably close agreement with the TOPSIS analysis, i.e.,
EPC3 as the rank#1 bidder, based upon the highest -relative
closeness ratio (RCg) taking into account the base case decision-
makers' criteria and importance weightings (i.e. subjective
weightings only). However, the integrated ranking order of alter-
native bidders differs, i.e., EPC3> EPC4> EPC2> EPC5> EPC1;
rather than EPC3> EPC1> EPC4> EPC5> EPC2 for TOPSIS (Table 7).
Fig. 1. Triangular fuzzy number ~a defined as a triplet (a, b, c) with membership function m~a
supplier selection scenario. Diagram modified after Krohling and Campanharo (2011) and G

Table 8
Results of non-weighted and weighted fuzzy TOPSIS analysis based upon triangular fu
Weighted scores are rounded to three decimal places.

Decision-makers' fuzzy TOPSIS assessments weighted for criteria priorities and impor

Fuzzy TOPSIS
linear score

Criteria weighted (Wc)
relative closeness measures
for each decision maker

Sum of criteria weighted (Wc) &
importance weighted (Wg) relative
closeness measures for each decision
maker

Bidder DM1 (Wc

e RC)
DM2 (Wc

e RC)
DM3 (Wc

e RC)
DM1 (Wc &
Wg e RC)

DM1 (Wc &
Wg e RC)

DM1 (Wc &
Wg e RC)

EPC1 0.546 0.604 0.502 0.182 0.201 0.167
EPC2 0.591 0.543 0.534 0.197 0.181 0.178
EPC3 0.501 0.515 0.628 0.167 0.172 0.209
EPC4 0.519 0.473 0.645 0.173 0.158 0.215
EPC5 0.581 0.618 0.472 0.194 0.206 0.157
A closer inspection of the fuzzy TOPSIS analysis from each de-
cision-maker's perspective reveals rankings that differ from the
combined ranking, as follows: DM1 ranking is EPC2> EPC5> EP-
C1> EPC4> EPC3; DM2 ranking is EPC5> EPC1> EPC2> EP-
C3> EPC4; and DM3 ranking is EPC4> EPC3> EPC2> EPC1> EPC5.
Note once again that none of the decision makers independently
ranks EPC3 at the top, even though the integrated analysis
(applying equal importanceweightings in the base case of 0.3333 to
each decision maker's assessment) ranks#1 EPC3.

A simple addition of the decision maker's RC indices (i.e., col-
umns 2 to 4 in Table 8) yields a ranking of EPC5> EPC2> EP-
C1> EPC3> EPC4, with the preferred integrated selection of the
fuzzy TOPSIS analysis in fourth position. A closer inspection of the
final four columns of Table 8 reveals that it is the middle ranking of
both Euclidean distances (i.e. Dgþ and Dg�) that work together in
(x) with overlapping triangular numbers belonging to fuzzy set ~A used for the defined
hazanfari et al. (2014).

zzy set scoring (Table 8) for the supplier-selection scenario defined in Tables 2e4

tance

Euclidian distance measures for integrated
analysis

Integrated TOPSIS analysis for Wc

and Wg weightings

Distance from
positive-ideal (Dgþ)

Distance from
negative-ideal (Dgþ)

Relative closeness
index (RCg)

Rank based on
RCg (1 ¼ best)

0.029 0.027 0.485 5
0.026 0.025 0.493 3
0.026 0.031 0.540 1
0.031 0.033 0.518 2
0.033 0.032 0.488 4
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achieving the highest RCg index for EPC3 in the fuzzy TOPSIS
analysis.
8. Fuzzy TOPSIS methodology with entropy weighting

By adding an entropy calculation, an objective entropy-
weighting can be added to the fuzzy-TOPSIS methodology, such
that the fuzzy triangular numbers are first adjusted by the entropy
weighting (i.e., objective weighting) and then adjusted by the de-
cision makers' criteria and importance rankings (i.e., subjective
weighting). The fuzzy-TOPSIS-with eentropy methodology applied
here calculates entropy and entropy weights using an adaption of
the method proposed by Wang et al. (2007).

In order to calculate entropy a crisp number is extracted from
the fuzzy number triplets that constitute the decision matrix using
equation (16) (see also Fig. 1):

xij ¼
aij þ bij þ cij

3
; with i ¼ 1;…;m; j ¼ 1;…;n (16)

This set of crisp numbers is then normalized for each criterion
using equation (17):

rij ¼
xijPn
j¼1 xij

; with i ¼ 1;…;m; j ¼ 1;…;n (17)

The entropy value (e) for each criteria in the decision matrix
element is then calculated with equation (18):

ei ¼ �k
Xn
j¼1

	
rij*ln rij



; with i ¼ 1;…;m; j ¼ 1;…;n (18)

where k is a constant, with k ¼ (ln (n))�1 applied here
The set of entropy values for each criteria, E(Ci), is then used to

calculate the entropy weights (We). In order to calculate entropy
weights with which to adjust the decision matrix for a TOPSIS
calculation a degree of difference is derived by subtracting entropy ei
from one:

di ¼ 1� EðCiÞ; i ¼ 1;2;…;m (19)

The degree of difference expresses the inherent contrast in-
tensity among the assessments of each criterion (Wang et al., 2007).
The greater the relative value of di the more important that criteria
is in discriminating between the n alternatives, and the greater
weight it is objectively assigned in the calculation.

The entropy weight w for each criterion i is then calculated to
form the set of entropy weights (We):
Table 9
Results of non-weighted and weighted fuzzy TOPSIS with entropy analysis based upon tria
Tables 2e4 Weighted scores are rounded to three decimal places.

Decision-makers' Fuzzy TOPSIS assessments weighted for entropy, criteria priorities a

Fuzzy TOPSIS
entropy weighted

Entropy (We) & criteria
weighted (Wc) relative
closeness measures for each
decision maker

Sum of entropy (We), criteria weighte
(Wc) & importance weighted (Wg)
relative closeness measures for each
decision maker

Bidder DM1 (Wc

e RC)
DM2 (Wc

e RC)
DM3 (Wc

e RC)
DM1 (Wc &
Wg e RC)

DM1 (Wc &
Wg e RC)

DM1 (Wc &
Wg e RC)

EPC1 0.555 0.613 0.494 0.185 0.204 0.165
EPC2 0.609 0.582 0.578 0.203 0.194 0.193
EPC3 0.423 0.459 0.492 0.141 0.153 0.164
EPC4 0.473 0.441 0.659 0.158 0.147 0.220
EPC5 0.569 0.603 0.375 0.190 0.201 0.125
wi ¼ di

,Xm
i¼1

di; i ¼ 1;2;…;m (20)

forming the set of entropy weights

We ¼ ðw1;w2;…wi;wmÞ

where wi � 0;
Xm
i¼1

wi ¼ 1

The decision matrix of fuzzy numbers (i.e. triplets) is then
adjusted by the calculated entropy (objective) weights and the
decisionmaker's (subjective) criteriaweights. The calculations then
proceeds as for the fuzzy TOPSIS methodology. An entropy weight
calculated in a similar way using crisp numbers could be applied to
the linear, non-linear and non-fuzzy TOPSIS decision matrix, but
that is not performed in this study.

Table 9 presents the key results of the fuzzy-TOPSIS with en-
tropy analysis using defined fuzzy-set-scoring system (Table 3,
Fig. 1) applied to base case assumptions for the defined supplier
selection scenario. The results are distinctly different from the
TOPSIS (Table 7) and fuzzy TOPSIS (Table 8) analysis, i.e., EPC2 as
the rank#1 bidder, based upon the highest -relative closeness ratio
(RCg) taking into account the entropy weightings (i.e., objective/
calculated) plus the base case decision-makers' criteria and
importance weightings (i.e. subjective weightings). The integrated
ranking order of alternative bidders for this methodology and base
case assumptions for the supplier-selection scenario is:
EPC2> EPC1> EPC4> EPC5> EPC3; note that the alternatives
ranked #1 and #5 by the TOPSIS calculation (Table 7) switch po-
sitions according to this methodology.

A closer inspection of the fuzzy TOPSIS analysis from each de-
cision-maker's perspective reveals rankings that differ from the
combined ranking, as follows: DM1 ranking is EPC2> EPC5> EP-
C1> EPC4> EPC3; DM2 ranking is EPC1> EPC5> EPC2> EP-
C3> EPC4; and DM3 ranking is EPC4> EPC2> EPC1> EPC3> EPC5.
Only decision maker DM1 independently ranks EPC2 at the top,
even though the integrated analysis (applying equal importance
weightings in the base case of 0.3333 to each decision maker's
assessment).

A simple addition of the decision maker's RC indices (i.e., col-
umns 2 to 4 in Table 9) yields a ranking of EPC2> EPC1> EP-
C4> EPC5> EPC3, with the preferred integrated selection of the
fuzzy TOPSIS analysis in fourth position. A closer inspection of the
final four columns of Table 9 reveals that EPC2 achieves RCg index
rank#1 mainly due to its low Euclidean distance from the positive
ngular fuzzy set scoring (Table 3, Fig. 1) for the supplier-selection scenario defined in

nd importance

d Euclidian distance measures for
integrated analysis

Integrated TOPSIS analysis for Wc

and Wg weightings

Distance from
positive-ideal (Dgþ)

Distance from
negative-ideal
(Dgþ)

Relative
closeness index
(RCg)

Rank based on
RCg (1 ¼ best)

0.033 0.048 0.589 2
0.017 0.060 0.782 1
0.057 0.023 0.286 5
0.042 0.055 0.568 3
0.055 0.042 0.432 4
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ideal solution (i.e. Dgþ) in the fuzzy TOPSIS with entropy analysis.
In sensitivity analysis to be presented below it becomes clear

that fuzzy TOPSIS and TOPSIS methodologies do not always agree
on the rank#1 bidder from the supplier selection scenario defined,
although that happens to be the case for base case importance
weightings (i.e., as shown in Tables 7e9).

9. Intuitionistic fuzzy TOPSIS (IFT) methodologies involving
entropy weightings

Intuitionistic fuzzy sets (IFS) are defined by the degree of
membership (m), the degree of non-membership (n) and an intui-
tionistic index p of their elements to the IFS. Such expressions are
able to effectively characterize vagueness and hesitancy associated
with imprecise knowledge or information constituting the lin-
guistic assessments of the criteria.

Atanassov (1999) defined an IFS A in the universe of discourse X
with the form:

A ¼ f½x;mAðxÞ; yAðxÞ�=x2Xg (21)

where:

mA : X/½0;1�; yA : X/½0;1� (22)

with the conditions that:

0 � mAðxÞ þ yAðxÞ � 1; cx2X (23)

A, therefore, only becomes set of crisp numbers if either mA or nA
equal 0 or 1. Hung and Chen (2009) provide a more complete
description of IFS relationships. As mA þ nA is typically less than 1
the value of pА, the intuitionistic index of x in A, is the important
fuzziness characteristic of an IFS and it is defined as:

pAðxÞ ¼ 1� mAðxÞ � yAðxÞ (24)

pА is also frequently referred to as the degree of hesitancy of x to
A. It expresses the degree of uncertainty in the assessment as to
whether x is, or is not, a member of IFS A.

The calculation of entropy for IFT is a key part of applying them
in IFS TOPSIS methodologies. As mentioned in the introduction in
an intuitionistic environment the entropy measure reveals infor-
mation about the relative value content associated with each cri-
terion, and the lower the calculated entropy for a criterion, the
lower weight that should be applied to that criterion. There are
several distinct methods proposed and applied for calculating IFS
entropy (EIFS), as mentioned in the introduction. Three such
methods are applied here to evaluate and compare the defined
supplier selection scenario.

The first method (termed IFT-1 here) uses the entropy compu-
tation proposed by Vlachos and Sergiadis, 2007 based upon the
concepts of De Luca and Termini (1972) as applied by Hung and
Chen (2009).

EðCiÞ ¼
�1

n ln 2

Xn
j¼1

�
mijðCiÞln mijðCiÞ þ yijðCiÞln yijðCiÞ �

	
1

� pijðCiÞ


ln
	
1� pijðCiÞ


� pijðCiÞln 2
�

(25)

where i ¼ 1, 2, …,m; j ¼ 1, 2, …,n

the constant 1/(n ln2) ensures 0 � E (Ci) � 1

In order to calculate entropy weights We with which to adjust
the decision matrix for a TOPSIS calculation (i.e. in place of
normalization adjustment equation (5) above) a degree of difference
is derived by subtracting entropy from one applying equation (19),
and entropy weights calculated using equation (20).

Equation (5) in the TOPSIS analysis is replaced with an entropy
weighted intuitionistic fuzzy decision matrix Z can be obtained by
aggregating the entropy weight vector We and the intuitionistic
fuzzy decision matrix D as:

Z ¼ We5D ¼ �exij� (26)

where

exij ¼ h
1� 	

1� mij

wi

; vwi
ij

i
; i ¼ 1;2; :::;m; j ¼ 1;2; :::;n (27)

Equation (27) for weighting IFS was proposed by Atanassov
(1999).

By replacing the normalizedmatrix derived by equation (6) with
the intuitionistic fuzzy decision matrix derived by equation (27),
the same TOPSIS methodology using IFS numbers is applied to the
one described above using crisp numbers (i.e. equations (3)e(13)),
with the exception that the Euclidean distances to the positive-
ideal solution and negative-ideal solution use expressions in the
form of equations (14) and (15), instead of equations (11) and (12),
to extract crisp distances from the differences between the three
elements of the IFS elements of the decision matrix and the
maximum and minimums established for the IFS elements of each
criteria. The IFT-1 methodology proposed here is an adaption of the
methodology proposed by Hung and Chen (2009). The decision
makers' criteria weights are applied to the Euclidian distances
calculated using the entropy-weighted decision matrix.

The second method (termed IFT-2 here) uses an entropy
computation based upon that proposed by Szmidt & Kacprzyk
(2001):

EðCiÞ ¼
1
n

Xn
j¼1

min
	
mijðCiÞ; yijðCiÞ


þ pijðCiÞ
max

	
mijðCiÞ; yijðCiÞ


þ pijðCiÞ

where i ¼ 1;2…;m; j ¼ 1;2…;n

(28)

The IFT-2 entropy values are then normalized and an entropy
weight calculated as follows:

hi ¼
EðCiÞ

max ½EðCiÞ�
; i ¼ 1;2;…;m (29)

where hi is normalised IFS entropy for each criteria in the decision
matrix and E(Ci) is the et of criteria entropy values.

This equation results in the criterion/criteria with the highest
entropy being assigned a normalised entropy value of 1 (and en-
tropy weight of zero).

In order to establish a less extreme entropy scale, a scaling factor
S can be introduced into the normalization equation;

hi ¼
EðCiÞ

max½EðCiÞ� þ Sðmax½EðCiÞ�Þ
; i ¼ 1;2;…;m (30)

where S is assigned a small fractional value (e.g. 0.01e0.3).
This results in some weight being assigned to the criteria with

the highest entropy.
For the base case the entropy scaling factor S is assigned a value

of 0.05. A degree of difference (di) is derived by subtracting
normalized entropy hi from one (i.e., applying equation (19)
substituting hi for E(Ci)). The entropy weight for each criterion i is
then calculated applying equation (20), in the sameway as the IFT-1
method.

These weights are then applied to the IFT-2 decision matrix
using equation (27). Instead of using a modified form of equations
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(14) and (15) to calculate the Euclidian distances from the positive-
ideal and negative-ideal solutions, as is the case for IFT-1, simple
distances from maximum and minimum weighted values for each
criteria are calculated using equations (31) and (32) for the IFT-2
methodology:

dþj ¼
Xm
i¼1

max
h�

pmþi � pmij
�
;
�
pnþi � pnij

�
; i ¼ 1;2;…;m; j

¼ 1;2;…;n
i

(31)

d�j ¼
Xm
i¼1

max
h�

pmij � pm�i
�
;
�
pnij � pn�i

�
; i ¼ 1;2;…;m; j

¼ 1;2;…;n

(32)
where:
dþj is the Euclidian distance from the positive-ideal solution (Aþ)
d�j is the Euclidian distance from the negative-ideal solution
(A�)
m and n are elements of an IFS decision matrix as defined by
equations (16)e(18), with p signifying that the elements are
adjusted by the entropy weights.
pmþi and pnþi are maximum weighted values for criteria i of m.
pm�i and pn�i are minimum weighted values for criteria i of m

As for the IFT-1 methodology, the decision makers' criteria
weights are applied to the Euclidian distances calculated from the
Entropy-weighted decision matrix.

The third method (termed IFT-3 here) uses the same overall
methodology as IFS-1, but replaces the entropy computation with
an adaption of that proposed by Ye (2010). Others have also pro-
posed IFS entropy formulations that involve sine or cosine ma-
nipulations of the m and n elements of the IFS decision matrix (e.g.
Parkash et al., 2008). Equation (25) of methodology IFT-1 is
replaced with equation (33):

EðCiÞ ¼
1
m

Xn
j¼1

��
sin

p� �
1þ mijðCiÞ � yijðCiÞ

�
4

þ sin
p� �

1� mijðCiÞ � yijðCiÞ
�

4
� 1

�
� 1

ð√2� 1Þ

�
(33)

where i ¼ 1, 2, …,m; j ¼ 1, 2, … s,n

The constant 1/(√2 � 1) ensures 0 � E(Ci) � 1
p here refers to the mathematical constant pi not the degree of
hesitancy

The remainder of the steps in the IFT-1 methodology is then
repeated in IFS-3 methodology, so the only difference between IFT-
1 and IFT-3 is the substitution of equation (33) for equation (25).

The intuitionistic fuzzy TOPSIS (IFT) analysis for the defined
supplier selection scenario (Tables 2e4) is conducted with all three
methodologies in two steps, similar to the approach taken for the
TOPSIS and fuzzy TOPSIS methodologies. The first step involves
three separate IFT analysis applying theweightings of each decision
maker. The second step involves applying a basic TOPSIS analysis
using the RC ratios (crisp numbers) for each decisionmaker derived
from the first IFT step, with the defined importance weightings
applied to the RC ratios calculated for each decision maker in step
one. The integrated RCg ratio calculated by the second step then
incorporates the entropy weightings calculated by each IFT
method, the criteria weightings of each decision maker and the
importance weightings assigned to each decision maker's contri-
bution in the integrated analysis.

An intuitionistic-fuzzy-set-scoring system, derived from the
linguistic assessments of the defined supplier-selection scenario
(Table 3), is applied in evaluating all three intuitionistic-fuzzy-
TOPSIS methodologies (i.e., IFT-1; IFT-2 and IFT-3). Clearly, there
is plenty of scope to vary the values of m, n and p that define the
intuitionistic fuzzy set assigned to each linguistic assessment to suit
specific circumstances (e.g. the greater the level of uncertainty in a
criterion assessment, the higher the value of p should be).

Table 10 presents the key results of the IFT analysis using the
defined IFS-scoring system (Table 3) applied to base case assump-
tions for the defined supplier selection scenario. The results for IFT-
1, IFT-2 and IFT-3 are quite distinct from the results of the TOPSIS
and fuzzy TOPSIS (with and without entropy) analysis. IFT-1, IFT-2
and IFT-3 all identify EPC1 as the rank#1 bidder, based upon the
highest -relative closeness ratio (RCg) taking into account the base
case criteria and importance weightings. The integrated ranking
orders of alternative bidders are: for IFT-1 and IFT-3 e EPC1> EP-
C5> EPC4> EPC2> EPC3; for IFT-2 -EPC1> EPC4> EPC5> EP-
C2> EPC3 (Table 10). The three IFT methodologies agree that
alternatives EPC 2 and EPC3 are ranked lower than the other three
bidders by quite some margin.

A closer inspection of the IFT analysis from each decision-
maker's perspective reveals rankings that differ from the com-
bined ranking, as follows for IFT-1 and IFT-3: DM1 ranking is
EPC5 > EPC1> EPC4 > EPC2 > EPC3; DM2 ranking is EPC1 > EP-
C2 > EPC4> EPC5 > EPC3; and DM3 ranking is EPC5> EPC1 > EP-
C4 > EPC2> EPC3. Note that only DM2 ranks EPC1 at the top, even
though the integrated analysis (applying equal importance
weightings in the base case of 0.3333 to each decision maker's
assessment) ranks#1 EPC1, and the RCg indices are very close
between these two alternatives. Individual decision-makers
rankings for IFT-2 are: DM1 ranking is EPC5 > EPC1> EPC2 > EP-
C4 > EPC3; DM2 ranking is EPC2 > EPC3 > EPC1> EPC4 > EPC5;
and DM3 ranking is EPC5 > EPC1 > EPC4> EPC2 > EPC3. Note that
no decision maker individually ranks EPC1 at the top, and DM2
ranks EPC1 in third place. The select of alternative EPC1 is
therefore not quite so clear cut with methodology IFT-2, which
becomes more apparent with sensitivity analysis described
below.

A simple addition of the decision maker's RC indices (i.e., col-
umns 2 to 4 in Table 10) yields a ranking for IFT-1 and IFT-3 of
EPC1> EPC5> EPC4> EPC2> EPC3, and for IFT-2 of EPC1> EP-
C4> EPC5> EPC2> EPC3 with the preferred integrated selection of
each methodology in first place. A closer inspection of the final four
columns of Table 10 reveals that it is the low Dg þ Euclidean dis-
tances, in particular, that result in the highest RCg index for EPC1 in
all IFT methodologies applied to the defined supplier selection
scenario. Similarly it is the low Dg- Euclidean distances, in partic-
ular, that result in the lowest RCg index for EPC3 in all IFT
methodologies.

Figs. 2e4 compare the bidder rankings derived from each of the
seven methodologies described and applied in this study to the
base case supplier selection scenario. What is clear is that quite
different bidder selections could be justified depending upon the
methodology/methodologies applied. All five of the bidders
potentially achieve high-ranking positions depending upon the
methodology applied. This means that it is important for decision
makers to clearly justify and explain their preferred selection
methodology and the strategic reasons motivating their application
of a certain methodology and weighting preferences.



Table 10
Results of weighted intuitionistic fuzzy TOPSIS analysis (IFT-1, IFT-2 and IFT-3 methods) based upon defined IF-assessment sets (Table 3) for the supplier-selection scenario
defined in Tables 2e4 Weighted scores are rounded to three decimal places.

Decision-makers' IFT-1 methodology TOPSIS assessments weighted for criteria priorities and importance

IFT-1 TOPSIS
entropy weighted

Entropy (We) & criteria
weighted (Wc) relative
closeness measures for each
decision maker

Sum of entropy (We), criteria weighted
(Wc) & importance weighted (Wg)
relative closeness measures for each
decision maker

Euclidian distance measures for integrated
analysis

Integrated TOPSIS analysis for Wc

and Wg weightings

Bidder DM1
(Wc e

RC)

DM2
(Wc e

RC)

DM3
(Wc e

RC)

DM1 (Wc &
Wg e RC)

DM1 (Wc &
Wg e RC)

DM1 (Wc &
Wg e RC)

Distance from
positive-ideal (Dgþ)

Distance from
negative-ideal (Dgþ)

Relative closeness
Index (RCg)

Rank based on
RCg (1 ¼ best)

EPC1 0.516 0.518 0.524 0.172 0.173 0.175 0.001 0.013 0.949 1
EPC2 0.507 0.516 0.504 0.169 0.172 0.168 0.005 0.009 0.652 4
EPC3 0.488 0.491 0.470 0.163 0.164 0.157 0.013 0.000 0.000 5
EPC4 0.511 0.513 0.522 0.170 0.171 0.174 0.002 0.012 0.853 3
EPC5 0.520 0.509 0.525 0.173 0.170 0.175 0.002 0.013 0.883 2

Decision-makers' IFT-2 methodology TOPSIS assessments weighted for criteria priorities and importance

IFT-2 TOPSIS
entropy
weighted

Entropy (We) & criteria
weighted (Wc) relative
closeness measures for
each decision maker

Sum of entropy (We), criteria
weighted (Wc) & importance
weighted (Wg) relative closeness
measures for each decision maker

Euclidian distance measures for
integrated analysis

Integrated TOPSIS analysis for Wc

and Wg weightings

Bidder DM1
(Wc e

RC)

DM2
(Wc e

RC)

DM3
(Wc e

RC)

DM1 (Wc &
Wg e RC)

DM1 (Wc &
Wg e RC)

DM1 (Wc &
Wg e RC)

Distance from
Positive-ideal
(Dgþ)

Distance from
Negative-ideal
(Dgþ)

Relative
Closeness Index
(RCg)

Rank Based on
RCg (1 ¼ best)

EPC1 0.512 0.502 0.522 0.171 0.167 0.174 0.003 0.010 0.762 1
EPC2 0.507 0.511 0.502 0.169 0.170 0.167 0.006 0.008 0.553 4
EPC3 0.504 0.509 0.477 0.168 0.170 0.159 0.011 0.006 0.348 5
EPC4 0.505 0.498 0.518 0.168 0.166 0.173 0.004 0.009 0.668 2
EPC5 0.514 0.478 0.535 0.171 0.159 0.178 0.006 0.011 0.642 3

Decision-makers' IFT-3 methodology TOPSIS assessments weighted for criteria priorities and importance

IFT-3 TOPSIS
entropy
weighted

Entropy (We) & criteria
weighted (Wc) relative
closeness measures for
each decision maker

Sum of entropy (We), criteria
weighted (Wc) & importance
weighted (Wg) relative closeness
measures for each decision maker

Euclidian distance measures for
integrated analysis

Integrated TOPSIS analysis for Wc

and Wg weightings

Bidder DM1
(Wc e

RC)

DM2
(Wc e

RC)

DM3
(Wc e

RC)

DM1 (Wc &
Wg e RC)

DM1 (Wc &
Wg e RC)

DM1 (Wc &
Wg e RC)

Distance from
positive-ideal
(Dgþ)

Distance from
negative-ideal
(Dgþ)

Relative
closeness index
(RCg)

Rank based on
RCg (1 ¼ best)

EPC1 0.516 0.517 0.523 0.172 0.172 0.174 0.001 0.012 0.948 1
EPC2 0.507 0.516 0.504 0.169 0.172 0.168 0.005 0.009 0.656 4
EPC3 0.489 0.491 0.470 0.163 0.164 0.157 0.013 0.000 0.000 5
EPC4 0.512 0.514 0.522 0.171 0.171 0.174 0.002 0.012 0.875 3
EPC5 0.519 0.508 0.524 0.173 0.169 0.175 0.002 0.012 0.878 2

Fig. 2. Summary of base case supplier rankings of suppliers EPC1 to EPC5 (identified as
1e5, respectively, on the outer perimeter of the diagram) using three distinct crisp-
number scoring, analysis and selection methodologies. The basic TOPSIS method, us-
ing the same criteria scoring system as the simple linear-scoring methodology, yields
quite different bidder rankings.

Fig. 3. Summary of base case supplier rankings of suppliers EPC1 to EPC5 (identified as
1e5, respectively, on the outer perimeter of the diagram) using a fuzzy-triangular-
scoring system combined with TOPSIS analysis. These two TOPSIS methodologies,
using the same fuzzy criteria scoring system as each other, yield quite different bidder
rankings.
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The two methodologies compared in Fig. 3 both use the same

triangular-fuzzy-set scoring system derived from the linguistic
variable assessments. Apart from both ranking EPC5 in rank#4



Fig. 4. Summary of base case supplier rankings of suppliers EPC1 to EPC5 (identified as
1e5, respectively, on the outer perimeter of the diagram) using an IFT-scoring system
combined with TOPSIS analysis applying different entropy-weighting formulas. These
three TOPSIS methodologies, using the same IFS criteria scoring system as each other,
yield very consistent bidder rankings.
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position they yield quite different ranking orders for the base case
assumptions. Incorporating entropy weighting has a significant
impact on the fuzzy triangular TOPSIS approach.

The three IFT methodologies compared in Fig. 4, all based on the
same IFS scoring system (Table 3) assigned from the linguistic
variable assessments, show similar bidder-selection rankings.
These rankings are also quite similar to the rankings derived from
the fuzzy-TOPSIS-with-entropy methodology (Fig. 3).

It is clear from Figs. 2e4 that entropy weighting, by whatever
method, has a significant impact on the suggested bidder rankings
derived by TOPSIS analysis and the fuzzy methodologies yield quite
distinct bidder rankings compared to the simple crisp-number
scoring approaches.
10. Sensitivity analysis applied to importance weightings
applied to decision makers

There is scope to perform sensitivity analysis with respect to
several of the base case input assumptions (e.g. subjective criteria
weightings applied by the decision makers, importance weightings
applied to each decision maker, numerical scoring and fuzzy set
values applied to the linguistic assessments) to provide further
insight to each selection methodology. When applying such
methods in practice it would make sense to evaluate all such
Table 11
Sensitivity analysis results for crisp-scoring methodologies for eleven cases varying the
DM3). The numbers show the ranking positions (1e5, with 1 being the best) calculated

Sensitivity analysis for supplier assessment evaluation with crisp number methodolog

Sensitivity cases Importance weightings
(Wg)

Linear scoring

DM1 DM2 DM3 EPC1 EPC2 EPC3 EPC4 EPC5

Base case 0.333 0.333 0.333 4 1 3 5 2
Case 2 0.250 0.500 0.250 2 3 4 5 1
Case 3 0.500 0.250 0.250 3 1 4 5 2
Case 4 0.250 0.250 0.500 4 3 1 2 5
Case 5 0.100 0.600 0.300 2 4 3 5 1
Case 6 0.200 0.600 0.200 2 3 4 5 1
Case 7 0.600 0.200 0.200 3 1 4 5 2
Case 8 0.200 0.200 0.600 4 3 1 2 5
Case 9 0.150 0.700 0.150 2 3 4 5 1
Case 10 0.700 0.150 0.150 3 1 5 4 2
Case 11 0.150 0.150 0.700 4 3 1 2 5
sensitivities to gain maximum insight to the factors driving the
recommended selection and ranking of the alternatives being
considered.

Sensitivity analysis of the importance weightings assigned to
each decision maker is presented here for the defined supplier
selection scenario. The importance weightings are applied in the
final step of the analysis associated with each methodology, so do
not fundamentally change the fundamental calculations that lead
to the rankings of each decision maker in each methodology. In the
base case analysis presented above the importance weightings are
equal (i.e., 0.3333) for each decision maker. A change in the
importance weightings applied to each decision maker means that
greater or less importance is given to their particular criteria
preferences/weightings listed in Table 2.

Ten sensitivity cases are evaluated (cases 2 to 11), in addition to
the base case, with the bidder rankings calculated for each of the six
methodologies listed in Tables 11e13. The rank#1 selection is
highlighted with background shading in Tables 11e13 for each
methodology applied to each case.

For the linear, basic TOPSIS and Fuzzy TOPSIS (no entropy)
methodologies changing the importanceweightings of the decision
makers significantly changes the calculated bidder rankings from
case to case (Tables 11 and 12). For the fuzzy TOPSIS methodology
all five bidders are ranked #1 depending upon the case selected!
With EPC1, EPC2 and EPC3 ranked #1 in three cases each, and EPC4
and EPC5 ranked #1 in one case each (Table 12). For the crisp-
number-TOPSIS methodology four of the bidders are ranked #1
depending upon the case selected (Table 11), with EPC2 never being
ranked higher than #3. For the linear and non-linear methodolo-
gies three of the bidders are ranked #1 depending upon the case
selected (Table 11), with EPC1 and EPC4 also both achieving a rank
#2 in several cases for the linear methodology. EPC1 and EPC2 also
both achieving a rank #2 in several cases for the non-linear
methodology (Table 11).

What stands out from the sensitivity analysis is the consistency
of selection and exact replication of the IFT-1 and IFT-3 method-
ologies (Table 13). IFT-1 and IFT-3 select EPC1 as rank#1 in 9 of the
eleven cases evaluated, and as rank#2 for the other two sensitivity
cases inwhich DM1 is assigned a very high importance weight. IFT-
2 shows less consistency in its rankings; selects EPC1 as rank#1 for
four cases, but also selects EPC4 as rank#1 in four cases and EPC5 as
rank#1 in three cases. None of the IFT cases select EPC2 or EPC3 as
rank#1 in any cases (Table 13). The fuzzy triangular TOPSIS with
entropy methodology also is consistent in its selection of EPC2 as
rank#1 in 8 cases and rank#2 in the other three cases (Table 12).
That methodology never selects EPC3 or EPC5 as rank#1. Three of
importance weightings (Wg) assigned to each of three decision maker (i.e., DM1 to
for each of five bidders (i.e., EPC1 to EPC5).

ies

Non-linear scoring TOPSIS (crisp linear scoring)

EPC1 EPC2 EPC3 EPC4 EPC5 EPC1 EPC2 EPC3 EPC4 EPC5

5 4 2 3 1 2 5 1 3 4
2 4 3 5 1 2 5 1 4 3
5 2 3 4 1 3 5 1 4 2
5 4 1 2 3 3 5 2 1 4
3 5 2 4 1 2 5 1 4 3
2 4 3 5 1 1 4 3 5 2
5 2 4 3 1 3 5 2 4 1
5 3 1 2 4 4 3 2 1 5
2 4 3 5 1 2 4 3 5 1
4 2 5 3 1 2 3 4 5 1
5 3 2 1 4 4 3 2 1 5



Table 12
Sensitivity analysis results for fuzzy-triangular-scoring methodologies for eleven cases varying the importance weightings (Wg) assigned to each of three decision maker (i.e.,
DM1 to DM3). The numbers show the ranking positions (1e5, with 1 being the best) calculated for each of five bidders (i.e., EPC1 to EPC5).

Sensitivity analysis for supplier assessment evaluation with fuzzy triangular TOPSIS

Sensitivity cases Importance weightings (Wg) Fuzzy TOPSIS (No entropy) IFS fuzzy triangular with entropy

DM1 DM2 DM3 EPC1 EPC2 EPC3 EPC4 EPC5 EPC1 EPC2 EPC3 EPC4 EPC5

Base case 0.333 0.333 0.333 5 3 1 2 4 2 1 5 3 4
Case 2 0.250 0.500 0.250 1 3 4 5 2 2 1 5 4 3
Case 3 0.500 0.250 0.250 3 1 5 4 2 2 1 5 4 3
Case 4 0.250 0.250 0.500 4 3 1 2 5 3 1 4 2 5
Case 5 0.100 0.600 0.300 1 4 3 5 2 2 1 5 4 3
Case 6 0.200 0.600 0.200 1 3 4 5 2 2 1 5 4 3
Case 7 0.600 0.200 0.200 3 1 5 4 2 2 1 5 4 3
Case 8 0.200 0.200 0.600 4 3 1 2 5 3 2 4 1 5
Case 9 0.150 0.700 0.150 2 3 4 5 1 1 2 5 4 3
Case 10 0.700 0.150 0.150 3 1 5 4 2 2 1 5 4 3
Case 11 0.150 0.150 0.700 4 3 2 1 5 3 2 4 1 5

Table 13
Sensitivity analysis results for intuitionistic fuzzy-set-scoring methodologies for eleven cases varying the importanceweightings (Wg) assigned to each of three decisionmaker
(i.e., DM1 to DM3). The numbers show the ranking positions (1e5, with 1 being the best) calculated for each of five bidders (i.e., EPC1 to EPC5).

Sensitivity analysis for supplier assessment evaluation with intuitionistic fuzzy set TOPSIS

Sensitivity cases Importance weightings
(Wg)

IFT- 1 IFT- 2 IFT- 3

DM1 DM2 DM3 EPC1 EPC2 EPC3 EPC4 EPC5 EPC1 EPC2 EPC3 EPC4 EPC5 EPC1 EPC2 EPC3 EPC4 EPC5

Base case 0.333 0.333 0.333 1 4 5 3 2 1 4 5 2 3 1 4 5 3 2
Case 2 0.250 0.500 0.250 1 4 5 2 3 2 4 5 1 3 1 4 5 2 3
Case 3 0.500 0.250 0.250 1 4 5 3 2 2 4 5 3 1 1 4 5 3 2
Case 4 0.250 0.250 0.500 1 4 5 3 2 1 4 5 2 3 1 4 5 3 2
Case 5 0.100 0.600 0.300 1 4 5 2 3 2 3 5 1 4 1 4 5 2 3
Case 6 0.200 0.600 0.200 1 3 5 2 4 2 3 5 1 4 1 3 5 2 4
Case 7 0.600 0.200 0.200 2 4 5 3 1 2 4 5 3 1 2 4 5 3 1
Case 8 0.200 0.200 0.600 1 4 5 3 2 1 4 5 3 2 1 4 5 3 2
Case 9 0.150 0.700 0.150 1 3 5 2 4 2 3 5 1 4 1 3 5 2 4
Case 10 0.700 0.150 0.150 2 4 5 3 1 2 4 5 3 1 2 4 5 3 1
Case 11 0.150 0.150 0.700 1 4 5 3 2 1 4 5 3 2 1 4 5 3 2
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the four methodologies with entropy weighting display consis-
tency in their ranking selections across the sensitivity cases
evaluated.

11. Entropy weighting scale sensitivities and other
considerations

In order for entropy weighting to be effective it needs to provide
a sensitive scale that clear discriminates between those criteria that
are of little use in distinguishing between the alternative bidders
(and apply low weightings to such criteria) from those criteria that
clearly distinguish between the alternative bidders (and apply high
weightings to such criteria).

Figs. 5 and 6 show that the entropy weightings applied by IFT-1
and IFT-2 are consistent. IFT-3 weightings are very similar to those
applied by IFT-1.

Although these entropy scales are consistent and objectively
calculated, a question that arises is how appropriate are these
weightings to the objectives of specific supplier selection sce-
narios? Some high-entropy criteria from the list of thirty identified
in Table 1 will be effectively marginalized from the selection pro-
cess because entropy weights of 0.01 or less will be applied to them.
Indeed if the S scaling factor is assigned a value of zero in the IFT-2
methodology the lowest entropy weight applied will be zero. This
may not be appropriate if, for example, regulations or the govern-
ment specify under bidding rules that certain criteria must be taken
into account (e.g. local content, safety, environment, etc.). If each of
the bidders is assessed similarly for those criteria, either at the poor
or good end of the scoring scales, they will have high entropy and
would likely be assigned a very low (or zero in some methodolo-
gies) entropy weight. Although this is objectively correct, it may be
inappropriate and hard for a project sponsor to justify to the
government.

In some cases it is likely to be appropriate to modify the entropy
weighting scale, i.e., to introduce some flexibility/subjectivity to the
scale of entropy weights applied. This is easiest to achieve using the
IFT-2 methodology and changing the value of S. Table 14 shows the
supplier selections for the sensitivity analysis cases applying four
value of S to IFT-2 that are different from the base case value of 0.05.
For the case with S ¼ 0 IFT-2 selects EPC1 as rank#1 in seven out of
the eleven cases. As the value of S increases EPC4 is progressively
favored as rank #1, and with an S value of 0.3 IFT-2 selects EPC4 as
rank#1 in all eleven cases.

Fig. 7 reveals the entropy weight scales applied by IFT-2 in the
base case and four sensitivity cases (Table 14). It can be seen that
the effect of increasing S is to dampen the entropy weight scale; by
slightly increasing entropy weights applied to the criteria with high
entropy (i.e., those that do not show much discrimination between
the alternative bidders), and slightly decreasing the entropy
weights applied to the key criteria with low entropy.

In many MCDM scenarios it is appropriate and desirable to have
an entropy weight scale that displays maximum inverse sensitivity
to entropy and applies an appropriately wide range of values. The
absolute value at the centre of the entropy weighting scale should
be 1/m, so is directly related to the number of criteria involved in
the analysis (e.g. Fig. 7). However, there are circumstances inwhich



Table 14
Sensitivity analysis results for intuitionistic fuzzy-set-scoring methodologies IFT-2, applying different entropy weight scaling values, for eleven cases varying the importance
weightings (Wg) assigned to each of three decision maker (i.e., DM1 to DM3). The numbers show the ranking positions (1e5, with 1 being the best) calculated for each of five
bidders (i.e., EPC1 to EPC5).

Sensitivity analysis for supplier assessment evaluation with IFT-2 varying entropy scaling factor

Sensitivity cases Importance weightings (Wg) IFT-2 with S ¼ 0.0 IFT-2 with S ¼ 0.10

DM1 DM2 DM3 EPC1 EPC2 EPC3 EPC4 EPC5 EPC1 EPC2 EPC3 EPC4 EPC5

Base case 0.333 0.333 0.333 1 4 5 3 2 2 4 5 1 3
Case 2 0.250 0.500 0.250 1 4 5 2 3 2 3 5 1 4
Case 3 0.500 0.250 0.250 2 4 5 3 1 2 4 5 1 3
Case 4 0.250 0.250 0.500 1 4 5 3 2 1 4 5 2 3
Case 5 0.100 0.600 0.300 1 4 5 2 3 2 3 5 1 4
Case 6 0.200 0.600 0.200 1 3 5 2 4 2 3 5 1 4
Case 7 0.600 0.200 0.200 2 4 5 3 1 3 4 5 2 1
Case 8 0.200 0.200 0.600 1 4 5 3 2 1 4 5 2 3
Case 9 0.150 0.700 0.150 2 3 5 1 4 2 3 5 1 4
Case 10 0.700 0.150 0.150 2 4 5 3 1 3 4 5 2 1
Case 11 0.150 0.150 0.700 1 4 5 3 2 1 4 5 3 2

Sensitivity cases Importance weightings (Wg) IFT-2 with S¼ 0.20 IFT-2 with S¼ 0.30
DM1 DM2 DM3 EPC1 EPC2 EPC3 EPC4 EPC5 EPC1 EPC2 EPC3 EPC4 EPC5

Base case 0.333 0.333 0.333 2 4 5 1 3 2 4 5 1 3
Case 2 0.250 0.500 0.250 2 3 5 1 4 2 3 5 1 4
Case 3 0.500 0.250 0.250 2 4 5 1 3 2 4 5 1 3
Case 4 0.250 0.250 0.500 2 4 5 1 3 2 4 5 1 3
Case 5 0.100 0.600 0.300 2 3 5 1 4 2 3 5 1 4
Case 6 0.200 0.600 0.200 2 3 5 1 4 2 3 5 1 4
Case 7 0.600 0.200 0.200 3 4 5 1 2 2 4 5 1 3
Case 8 0.200 0.200 0.600 2 4 5 1 3 2 4 5 1 3
Case 9 0.150 0.700 0.150 2 3 5 1 4 3 2 5 1 4
Case 10 0.700 0.150 0.150 3 4 5 2 1 3 4 5 1 2
Case 11 0.150 0.150 0.700 1 4 5 2 3 2 4 5 1 3

Fig. 5. Calculated entropy versus applied entropy weight for IFT-1 methodology
showing the criteria for the defined supply selection analysis (Table 1) to which high
weightings are applied and those (e.g. criteria 12) to which low weightings are applied.

Fig. 6. Applied entropy weights for IFT-1 methodology versus IFT-2 methodology
(S ¼ 0.05; base case assumption) showing that the entropy weightings calculated by
quite different methods are well correlated and extend over similar ranges.
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the application of near-zero entropy weights are inappropriate, e.g.
where there are few criteria involved and eliminating some may
significantly impact the “objectively” selected decision outcome,
and as mentioned where it would go against regulations/re-
quirements to essentially disregard certain criteria. In such cir-
cumstances having the flexibility in the IFT to modify/dampen the
entropy function can be a useful tool with which to tune IFS and
fuzzy TOPSIS analysis.

The IFT-2 entropy/entropy weight calculation approach (i.e.,
equations (28) and (30)) is therefore proposed here as a new
intuitionistic-fuzzy-TOPSIS method with flexible-entropy weighting
suitable for MCDM scenarios in which an objective-entropy-
derived- weighting scale needs to be tuned. Equation (30) is less
mathematically elegant than entropy equations (25) and (33), but
what it lacks inmathematical sophistication it gains in its simplicity
and tuning capabilities. Modifying the S factor in equation (30) also
offers some useful sensitivity analysis insight. For instance, in the
supplier selection scenario employed here to illustrate various
MCDM methodologies dampening the entropy weighting scale
shifts the IFT selection from alternative EPC1 to EPC4 as the rank#1
recommended selection. Such information is useful in under-
standing the impact of entropy weighting on the ranking of
alternatives.

For many gas and oil organizations supplier bid evaluation and
supplier selection are core activities that can significantly impact
project success or failure and the overall financial performance of
the organization. However, the complex nature of the markets and
macro-economic factors influencing project performance mean
that MCDM must systematically integrate assessments of multiple
financial and non-financial criteria. Whereas it is possible for



Fig. 7. Entropy versus entropy weights applied for IFT2 methodology with various
values of S applied to the entropy weighting equation (30) for the defined supplier
selection scenario. The point of intersection of these lines corresponds to 1/30
(0.3333…), a value of equal weighting applied to 30 criteria. The S factor has a damping
effect on the entropy weight.
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decision makers to place more or less weight on certain financial/
non-financial criteria used in specific cases of MCDM analysis, an
intuitionistic-fuzzy-TOPSIS method with flexible-entropy weight-
ing provides an effective, repeatable and objective method to sys-
tematically incorporate the impact of a large number of assessed
criteria when making a supplier-selection decision.
12. Conclusions

Supplier selection incorporating multi-criteria decision making
(MCDM) is a critical and recurring activity in the gas and oil in-
dustries that has important financial and performance conse-
quences for large facilities construction (e.g. EPC), and other project
types, frequently undertaken by operators and their joint venture
partners. There are a number of well-established MCDM method-
ologies, varying from simple to mathematically sophisticated, that
are widely used across many industries and applied as tools to aid
decision makers in such circumstances. However, such methodol-
ogies typically involve the influence of subjective and/or objective
weightings that impose certain bias and preferences on the selec-
tions and rankings of the alternatives they consider. The impact of
subjective weightings (i.e., those imposed on criteria by analysts
and decision makers, and the relative importance placed on the
recommendations of each decision maker in the final integrated
analysis) and/or objective weightings (i.e. entropy-related calcula-
tions derived mathematically from the scoring systems applied)
need to be understood and taken into account by decision makers
in justifying the methodologies they rely on in making a final
selection.

The joint-venture preferences for large gas and oil facilities
projects and the multi-divisional structure of large gas and oil or-
ganizations frequently require that decisions consider and integrate
the subjective preferences of multiple parties assessing bids, sub-
mitted by multiple bidders. This requires useful MCDM method-
ologies to demonstrate the flexibility to ideally include a range of
objective entropy weightings (We), derived systematically from the
scoring system applied in the analysis, combined with criteria
weightings (Wc) and importance weightings (Wg) applied to each
party/decision maker involved in the process.

Comparisons of the eight methodologies (linear, non-linear,
TOPSIS, fuzzy TOPSIS (with and without entropy weighting), and
three IFT methods for intuitionistic fuzzy TOPSIS -IFT e each
involving a different entropy weighting calculation) applied to the
defined supplier selection scenario highlight that quite distinct
bidder rankings are calculated by each method. This observation
suggests that decision makers should be prepared to compare the
results of several methodologies, and run extensive sensitivities on
the assumptions and assessments, before selecting a preferred
bidder.

The first threemethodologies use only crisp numbers and do not
take into account any uncertainties associated with the linguistic
assessments fromwhich they are derived. This makes their validity
questionable in scenarios where high degrees of uncertainty are
known to exist (e.g. building a facility in a country lacking infra-
structure where significant gas or oil developments have not taken
place before). The methodologies that translate the linguistic as-
sessments into fuzzy sets enable uncertainty to be incorporated in
the calculated ranking. The fuzzy TOPSIS methodology incorpo-
rating entropy weightings and the IFT methods, provide more
consistent rankings across multiple case sensitivity analysis than
thosemethods that do not involve entropyweighting. However, the
different approaches applied in the calculation of the entropy
weightings in IFT methods can lead to different bidder rankings
depending upon the sensitivity of the entropy weighting scale
applied. It is therefore important for the decision makers to un-
derstand to which criteria the entropy weights are giving prefer-
ence, and that those preferences are consistent with their decision
making strategies and procurement regulations. A case is made in
this study for applying a new intuitionistic-fuzzy-TOPSIS-method-
with-flexible-entropy-weighting methodology to MCDM scenarios
that can benefit from tuning the entropy weighting scale (e.g., to
establish maximum and minimum thresholds for weights to be
applied, to avoid near-zero weights being applied to low ranking
criteria, and to gain insight from sensitivity analysis achieved by
varying the entropy-weight scale.
Nomenclature

A set of n alternative bidders
Aj sum of unweighted criteria scores x for each of n

alternatives (bidders)eAþ
set of positive ideal solutions for each of n alternatives

A� set of positive ideal solutions for each of n alternatives
C set of m alternative criteria with which to assess

alternatives
d�j Euclidian distance from negative ideal solution for each of

n alternatives
dþj Euclidian distance from positive ideal solution for each of

n alternatives
di degree of difference (i.e. 1 minus entropy)
ei entropy calculated for each of m criteria in the decision

matrix
E set of entropy values e for m criteria
hi normalized entropy for each of m criteria
k constant in some entropy equations
mA degree of membership of intuitionistic fuzzy set A
m�a membership function of triangular fuzzy number ~a
vA degree of non-membership of intuitionistic fuzzy set A
p weight-adjusted scores for m criteria for set of n

alternatives
pþ maximum of weight-adjusted criteria for set of n

alternatives
p� maximum of weight-adjusted criteria for set of n

alternatives
pA intuitionistic index (degree of hesitancy) of intuitionistic

fuzzy set A
p mathematical constant pi used only in equation (33)
r normalized m criteria scores for each of n alternatives
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R normalized decision matrix (m criteria; n alternatives)
RCj relative closeness index for each of n alternatives for each

decision maker
RCg integrated relative closeness index for each of n

alternatives with Wg weights applied
Wc criteria weights (subjective) applied by each decision

maker
We entropy weights (objective) to apply to each criteria
Wg importance weights applied (subjective) to each decision

makers' assessments
x unweighted m criteria scores for n alternatives forming

decision matrix D
x entropy-weighted m criteria scores for n alternatives

forming IFS decision matrix D
Z weighted intuitionistic fuzzy decision matrix
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