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a b s t r a c t

Wellbore trajectory design is a determinant issue in drilling engineering. This paper introduces a new
stochastic approach for drilling trajectory design applying continuous particle swarm algorithms to find
the optimum drilling measured depth of directional and horizontal wells in 3-D space. Considering all
the constraints and limitations, the final goal is to determine all geometrical well parameters, in order to
achieve the optimum measured depth to the desired target location. Particle swarm optimization is a
computational algorithm inspired from natural behavior of some animal societies, such as flocks of birds
and shoals of fish. In this review, the trajectory design method for an objective function, originally
proposed by Adams and Charrier (1985), is explored and developed. Also, the attributes of the particle
swarm optimization (e.g., Onwunalu, 2010) and Meta-optimization (e.g., Pedersen, 2010a,b) algorithms
are considered and compared. These algorithms are then applied to demonstrate the determination of
true measured depth of example horizontal wellbores as the objective function. Faster convergences,
better final points which satisfy all constraints imposed on the drilling paths and population diversity
maintenance to help the algorithms find better solutions, are positive characteristics of the solutions
found using the algorithms proposed. These algorithms make promising new tools for designing
economically-effective trajectories for deviated wells.

MATLAB codes for the PSO algorithms evaluated are provided as appendices to this article.
© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The industry has recognized for more than a century the ben-
efits of being able to drill and steer deviated wellbores with the
early oil well application in the 1920s and the first horizontal well
drilled in 1929 near Texon, Texas, USA (Kashikar, 2005). Prior to the
1950s wells were drilled with horizontal sections of just a few tens
of meters, but the technology was gradually scaled up (Pratt, 2004).
The first multi-lateral well was drilled in the Soviet Union in 1953,
where that technology was further developed through to the 1980s
(Kashikar, 2005). It was the 1980s and 1990s when directional
drilling technology became a commercially-viable and the
preferred option for drilling and developingmany oil and gas fields.
In the 1980s directional drilling was though quite different from
ms Optimization.
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today, without the benefits of steerable motors and bits and many
of the other technologies subsequently developed, making it risky
and costly. Of the many problems that have confronted directional
drilling, selecting the optimum wellbore trajectory is one that has
received much attention over the years.

One of the primary reasons for drilling directional boreholes is
to reach and traverse subsurface objectives that could not easily be
reached with a single or multiple vertical boreholes (Pratt, 2004).
To optimize oil and gas recovery, wellbores must have the best
possible exposure to the reservoir. Drilling sharply deviated or
horizontal wells makes it possible to place the well path within the
productive intervals over long distances. There are in fact several
reasons why directional and horizontal drilling has become the
drilling technology of choice since the 1990s (e.g. Short, 1993),
including: draining wider areas of a reservoir to increase well
productivity; increasing the net productive section length of target
reservoir drilled; drilling multiple wells from a single well pad to
minimize the surface footprint of drilling operations; production
improvement by penetrating more fractures in fractured reser-
voirs; precise positioning of relief wells in instances of loss of well
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control. Some of these now-essential applications of directional
drilling in the oil and gas industry are illustrated in Fig. 1.

Directional drilling typically is more expensive than vertical
drilling, but its cost is justified by its potential to significantly in-
crease well productivity and deliver a lower overall cost of supply
on a cost/unit of gas (or oil) produced (e.g. Dalzell, 2013). Finding
minimum trajectory length and more accurate well paths are two
key factors in reducing drilling time and total well cost. The final
goal is to determine the optimum directional well design param-
eters when the coordinates of wellhead and downhole target lo-
cations are specified, and some other geometrical and technical
constraints are imposed onwellbore trajectory design (e.g. avoiding
existing wellbores; avoiding shallow gas pockets; avoiding the
intersection of certain faults, etc.).

Particle swarm optimization (PSO) is a metaheuristic optimiza-
tion method that makes few assumptions about the problem being
optimizedwith the ability to search large solution spaces to find the
better solutions. It was first developed by Kennedy and Eberhart
(1995) and Kennedy (1997). PSO optimizes a problem iteratively
by monitoring and improving a population of candidate solutions,
referred to as “particles”, in terms of an objective function or fitness
test (i.e. measure of quality). It does this by repeatedly adjusting the
position of the particles in the search-space according to simple
mathematical formulas that determine each particle's “position”
and “velocity” (Shi and Eberhart, 1998a,b).

This optimization technique has in recent years been success-
fully applied, often in hybrid methodologies involving other opti-
mization tools, to successfully solve varied optimization problems
in the petroleum industry, for example: prediction of reservoir
permeability (Ahmadi et al., 2013); prediction of minimum misci-
bility pressure for carbon dioxide injection (Sayyad et al., 2014);
and, parameter estimation for a polypropylene reactor (Prata et al.,
2009).

In fact, recent research has demonstrated that PSO applications
include many diverse areas of potential application, such as:
communication networks; robotics; signal processing; power
generation, transmission and distribution systems and networks;
prediction and forecasting, electronics and electromagnetics;
meteorological predictions; investment decision-making; face
detection and recognition, etc. For example, in the medical and
pharmaceutical sectors, some PSO applications include: human
tremor analysis for the diagnosis of Parkinson's disease (Eberhart
and Hu, 1999); inference of gene regulatory networks (Rui et al.,
2007); gene clustering (Xiao et al., 2003); and, DNA motif detec-
tion (Han et al., 2005). Hence, this relatively recent tool has seen
rapid and diverse uptake which testifies to its powerful and desir-
able performance.

The PSO algorithm is applied to successfully design a wellbore
trajectory, based on a real well drilled in Egypt, and previously used
to demonstrate wellbore trajectory optimization using a genetic
algorithm by Shokir et al. (2004).

2. Calculating wellbore trajectories

A number of methodologies have been applied to estimate
wellbore trajectory in the planning stages and while a wellbore is
being drilled Craig and Randall (1976). The most-widely used
methods are the tangential, angle-averaging, minimum curvature
and radius-of-curvature methods. The tangential method involves
only the inclination and direction angles measured at the lower end
of the wellbore length. The wellbore path is assumed to be a
tangent to these angles throughout its length. Although this
method has been widely used it is the least accurate approach. In
the 1990s several models were developed to calculate detailed well
trajectories of deviated wellbores (e.g. Hashim,1995; Xiushan et al.,
1997; Suryanarayana et al., 1998) and these have been further
developed in the past decade (e.g. Shokir et al., 2004).

There are several methods used by the industry to calculate well
trajectory, i.e., the tangential method, the angle-averaging method
and the radius of curvature method are the more common ones. In
this paper, we focus on the radius of curvature method to design
our example well trajectories and are outlined below. In the 1990s
several models were developed to calculate detailed well trajec-
tories of deviatedwellbores (e.g. Hashim,1995; Xiushan et al., 1997;
Suryanarayana et al., 1998) and have been further developed in the
past decade (e.g. Shokir et al., 2004).
2.1. The radius of curvature method

The details of radius of curvature calculations have been well
established since the 1980s (Adams and Charrier, 1985). In this
study we focus on the radius of curvature method in order to
compare the performance of PSO algorithm in determining the
optimum trajectory parameters for a defined wellbore objective
and constraints versus the performance of a genetic algorithm for
the same wellbore objective and constraints, as originally pre-
sented by Shokir et al. (2004).

Considering a simple deviated wellbore the main parameters
which affect the true measured depth (TMD) in the build-up phase
calculated by the radius of curvature method are illustrated in
Fig. 2. The effective parameters are vertical inclination hold an-
gle(s), azimuth angles, dogleg severity, true vertical depths, and,
lateral length. The problem is to find a good solution for effective
parameters with the objective of minimizing true measured depth.

A schematic vertical plane cross-section of a generic 3D-hori-
zontal well trajectory with more than one angle build-up and hold
sections and an angle drop-off section is shown in Fig. 3. It is this
well design that is used in the optimization analysis presented here.

Equation (1) calculates the constant curvature equation be-
tween two points in space:

a ¼ 1
DMD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2 � q1Þ2 sin4
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�
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where “a” is the constant of curvature in degrees/foot and DMD is
the change in measured depth.

Equation (2) calculates the radius of curvature, “r”, in degrees/
100 feet:

r ¼ 1
a
¼ 180*100

p*T
(2)

where “T” is the dog-leg severity
Considering the equations (1) and (2), equation (3) calculates

the well path between two points in a three dimensional survey
(Shokir et al., 2004):

DMD ¼ r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Equations (4)e(6) calculate offset distances in three specific di-
rections (i.e. to the north, to the east and vertically) and are derived
from the radius of curvature method (Adams and Charrier, 1985).

DNorth ¼ DMD$ðcosð∅1Þ � cosð∅2ÞÞ$ðsinðq2Þ � sinðq1ÞÞ
ð∅2 �∅1Þ$ðq2 � q1Þ

(4)

DEAST ¼ DMD$ðcosð∅1Þ � cosð∅2ÞÞ$ðcosðq1Þ � cosðq2ÞÞ
ð∅2 �∅1Þ$ðq2 � q1Þ

(5)



Fig. 1. Reasons for drilling directionally-deviated wellbores.

A. Atashnezhad et al. / Journal of Natural Gas Science and Engineering 21 (2014) 1184e12041186



Fig. 2. Deviated well trajectory survey-calculation variables.
Modified after Adams and Charrier, 1985.
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DVertical ¼ DMD$ðsinð∅2Þ � sinð∅1ÞÞ
ð∅2 �∅1Þ

(6)

Equations (4)e(6) provide the north-south, east-west and true
vertical depth (TVD) at any point along specific curved segments of
a wellbore trajectory.

Equation (7) then calculates the true measured depth (TMD) of
the wellbore trajectory, which is the objective function for this
study:

True Measured Depth ðTMDÞ ¼ DKOP þ D1 þ D2 þ D3 þ D4 þ D5

þ HD

(7)
Fig. 3. Vertical plane cross-section of a generic 3D-deviated-and-partially-horizontal well
nations of labeled angles and wellbore section lengths.
D1 to D5 are calculated measured depths of specific segments of
the wellbore trajectory illustrated in Fig. 2 applying was calculated
considering the above equations with the detailed calculations
explained by equations (4)e(18) published by Shokir et al. (2004).

2.2. Example wellbore objectives and constraints

When drilling a deviated wellbore typically drilling engineers
are provided with a target objective in terms of geographic co-
ordinates, a true vertical depth (TVD) to an objective reservoir
formation (with some error limits on that TVD), a surface location
from which to commence the wellbore, and an objective lateral
length (perhaps horizontal, or perhaps at a specified angle tomatch
the dip of the objective reservoir formation) to drill within the
reservoir. Such objectives are typically transformed into a set of
constraints applied to establish acceptable wellbore trajectories to
reach the specified target. The objective function then becomes the
minimization of true measured depth for wellbore trajectories that
satisfy all of the imposed constraints.

The constraints are typically classified into two groups:

1) Operational constraints, which normally are taken into consid-
eration when a well trajectory is designed. The operational
constraints include geological and geometrical limitations,
technological shortages, controlling buildup and drop-off rates,
managing the hold angle value, etc.

2) Non-negative constraints, are those which prevent negative
values being considered for certain variables, e.g. measured
depth.

The constraints imposed on the objective function of the
example wellbore trajectory modeled in this study are presented in
Table 1 and are the same as those studied by Shokir et al. (2004).

3. Particle swarm optimization (PSO) methodology

3.1. PSO algorithms

The PSO algorithm was inspired from the observed social be-
haviors of some animals, such as birds and fish. PSO is a compu-
tational algorithm which is based on iteration (Kennedy and
Eberhart, 1995). This algorithm uses a matrix of random of
trajectory (modified after Shokir et al., 2004). See nomenclature for definitions/expla-



Table 1
Constraints imposed on the objective function of the example wellbore trajectory
modeled (as specified by Shokir et al., 2004).

The variables Variable constraints imposed
on generic wellbore design

Target true vertical depth (TVD) Min. TVD ¼ 10,850 ft.
Max. TVD ¼ 10,900 ft.

Lateral section length (HD) 2500 ft.
Dogleg severity T1 � 5�/100 ft., T2 � 5�/100 ft.,

T3 � 5�/100 ft., T4 � 5�/100 ft.
T5 � 5�/100 ft.

Minimum value of inclination angles (phis) f1 ¼ 10� , f2 ¼ 40� , f3 ¼ 90�

Maximum value of inclination angles (phis) f1 ¼ 20� , f2 ¼ 70� , f3 ¼ 95�

Minimum value of azimuth angles (thetas) q1 ¼ 270� , q2 ¼ 270� , q3 ¼ 270�

q4 ¼ 330� , q5 ¼ 330� , q6 ¼ 355�

Maximum value of azimuth angles (thetas) q1 ¼ 280� , q2 ¼ 280� , q3 ¼ 280�

q4 ¼ 340� , q5 ¼ 340� , q6 ¼ 360�

Kick-off point depth (TVD) Min. DKOP ¼ 600 ft.
Max. DKOP ¼ 1000 ft.

Second build point depth (TVD) Min. DD ¼ 6000 ft.
Max. DD ¼ 7000 ft.

Third build point depth (TVD) Min. DB ¼ 10,000 ft.
Max. DB ¼ 10,200 ft.

Casing setting depth after first build (TVD) Min. C1 ¼ 1800 ft.
Max. C1 ¼ 2200 ft.

Casing setting depth after 2nd build (TVD) Min. C2 ¼ 7200 ft.
Max. C2 ¼ 8700 ft.

Casing setting depth after 3rd build (TVD) Min. C3 ¼ 10,300 ft.
Max. C3 ¼ 11,000 ft.
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candidates. Hence, it is similar to other evolutionary algorithms
such as Genetic Algorithms (GA) and Imperialist Competitive Al-
gorithms (ICA). In contrast with GA, PSO has no operators, such as
mutation and cross-over, so the PSO solution process is more
similar to ICA than GA. Each particle, called an “element”, which are
comparable with the terms “chromosome” used in GA and “coun-
try” used in ICA.

The PSO algorithm is composed of a number of swarms of par-
ticles which stochastically are assigned initial values, either
randomly or as seed values. A velocity vector and position vector
are attributed to each particle. Each particle moves around the n-
dimensional space of the feasible solutions to find the next opti-
mum candidate considering pre-determined competence criteria.
Problem space dimensions are equal to the number of parameters
(i.e., unknown variables), which define the problem. A memory is
addressed to the best previous position of each particle, and a
general memory is assigned as the best position found by the last
iteration. Taking into account these memories, the particle posi-
tions for the next step in the next iteration are selected. In any
Fig. 4. PSO velocity components and update position fo
iteration, particles move around in n-dimensional space of the
feasible solutions until finding the best global position. Each par-
ticle updates its velocity and position considering the best previous
position for the swarm and the best global position found up to that
point. As and when an improved position is discovered in each
iteration, it replaces the previous position, and these steps are
repeated. Finding the best global position is an aspiration, but is not
guaranteed (Sharma and Khurana, 2013).

PSO algorithms refer to topologies or neighborhoods in which
particles are grouped into swarms (Onwunalu, 2010). Particles ex-
change information freely with other particles in their neighbor-
hood. The concept of an adjacency matrix helps to identify
computationally how particles interact, where particles in the rows
of the matrix are in the same swarm, the informing particles
communicating information to each other, but the particles in the
columns represent the informed particles that contain the infor-
mation gathered by other swarms evaluated so far, including the
global best position. The informing particles (rows) can commu-
nicate with the informed particles (columns) to establish a new
global optimum. On the other hand the informed particles typically
influence the informing particles via the best global position found
so far. There are several ways in which the neighborhoods (topol-
ogies) can be defined in terms of particle communication rules
leading to different PSO algorithms (e.g. Onwunalo and Durlofsky,
2010, their Fig. 2).

Assume f is our objective functionwhichmust beminimized and
defined in n-dimensional space (e.g. f: Rn … R). The objective func-
tion is assigned a vector and calculates an output for which its ve-
racity and precision is measured in relation to its appropriateness.
The goal is to find a vector such as “a” where f(a) < f(b) for all can-
didates in the search space. Such a vector is called the best global
position. In the PSO algorithm, in order to determine the velocity
vector, the Inertia component, Cognitive component and the Social
component are three determinant parameters calculated. The
Inertia component (u) applies a degree of continuity from one
iteration to the next and helps prevent particles moving outside the
problemboundaries. TheCognitive component (4p)moves aparticle
toward its best previous position in the swarm. The Social compo-
nent (4g) moves the particle toward the best global position found
up to that point. These three components have different roles in the
PSO optimization algorithm. In each iteration, the next position of
particles is based on the calculation of equations (8) and (9)
(Engelbrecht, 2005; Onwunalu, 2010; Onwunalu and Durlofsky,
2010). There are three components used to calculate the velocity
of each particle in equation (8): the Inertia component (u); the
r a particle Xi from iteration (k) to iteration (k þ 1).



Fig. 5. The concept of Meta optimization (modified after Pedersen, 2010a,b). One optimizer is used in an offline manner to tune the behavioral parameters of the optimizer that is
ultimately to be used to optimize the actual problem. In this study a PSO algorithm is used for the Meta optimizer and the problem optimizer in order to optimize wellbore
trajectory.

Table 2
PSO behavioral parameter ranges for a problem with five dimensions suggested by
Pedersen and Chipperfield (2010). Behavioral parameters used in that study were
the number of particles per swarms (S), inertia (W), cognitive (C1) and social (C2)
values shown.

Problem
dimensions

Fitness
evaluations

PSO parameters

S W C1 C2

5 1000 63/47 �0.3593/
�0.1832

�0.7238/0.5287 2.0289/3.1913

Fig. 6. Flowchart illustrating the overall Meta optimization procedure.
Modified after Onwunalu, 2010, Fig. 4.2.
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Cognitive component (4p); and, the Social component (4g) as illus-
trated in Fig. 4 for a two dimensional search space.

Vi;d ¼ uVi;d þ 4prp
�
pi;d � Xi;d

�
þ 4grg

�
gd � Xi;d

�
(8)

where:

Vi,d: Velocity of ith particle and for dth dimension
u: Inertia component (referred to as W in following tables and
figures)
4p: Cognitive component (referred to as C1 in following tables
and figures)
4g: Social component (referred to as C2 in following tables and
figures)
rp, rg: are random numbers uniformly distributed between 0 and
1, applied to the cognitive and social components, respectively.
Table 3
Behavioral parameters recommended for the PSO Meta optimization to solve a 5-
dimensional problem (Pedersen, 2010a,b). These were used initially to search for
the optimal PSO behavioral parameters to apply when optimizing the defined
wellbore trajectory problem.

Meta optimizer algorithm behavioral parameters S W C1 C2

47 �0.2 0.5 2.5

Table 4
Superswarm parameter ranges, selected based upon conclusions of Pedersen
(2010a,b), searched by the Meta optimization study to identify the optimal behav-
ioral parameters to use as input for the tuned PSO optimization analysis of the
defined wellbore trajectory problem. The values shown represent upper and lower
value constraints applied to the parameters.

Superswarm parameter
ranges searched by meta optimization

S W C1 C2

20e70 �0.5 to 0 �0.5 to 0 0e4

Table 5
Number of iterations and overall runs used to derive the average optimum behav-
ioral parameter results for the Meta optimization.

Subswarm code
parameters

Iterations Number of runs (used to
calculate an average)

100 3



Table 6
Behavioral parameters established by three tuned runs of the Meta optimization algorithm. The non-tuned behavioral parameters, shown for comparison, are those suggested
by Pedersen (2010a,b) for solving 10e20 dimensional problems.

PSO behavioral parameters Tuned Run 1 Tuned Run 2 Tuned Run 3 Non-tuned

C1 �0.414658484 0.006843348 �0.059926157 �0.2699
C2 2.354873241 3.999823467 3.812480878 4.2373
W 0 �0.127441595 0 �0.67
Number of swarms 65 50 20 45
Optimized TMD (feet) 15,023.55 15,023.63 15,023.73 15031.31

Fig. 7. Comparison between tuned and non-tuned parameter operations in two hundred iterations of the PSO algorithm, applying the behavioral parameters listed in Table 6 for
wellbore trajectory optimization.
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pi,d: Best particle value found in the current swarm for the dth
dimension of ith particle, up to current iteration
Xi,d: Value of the dth dimension of ith particle
gd: Best global value found for the dth dimension by all particles
in the current and previous swarms up to current iteration,
which, at the end of the last iteration, contains the optimal
values the dth dimension.

Xi þ Xi þ vi (9)

In equation (9), the value of the ith particle, X , for each
Table 7
Meta and tuned optimization setup and assumptions for the wellbore trajectory
analysis.

Meta (tuning) optimizer Applying tuned
optimizer

Optimization steps Step 1 Step 2
Optimization algorithm

applied
PSO PSO

Algorithm behavioral
parameters

C1, C2, u, S
Selected from Table 2, based
upon those suggested by
Pedersen and Chipperfield
(2010)

C1, C2, u, S
Selected from the
optimum results
of three Meta runs
of step 1

Objective function Search a 5-dimensional
problem to find best
behavioral parameters
with which to optimize TMD

Search a
16-dimensional
problem to find
best (minimum) TMD

Number of particle
positions or
superswarms (S)

Initially 47 (from Table 3),
but ultimately reduced to 5
based on computation time
versus results

65 (from Meta Run 1)
50 (from Meta Run 2)
20 (from Meta Run 3)

Number of iterations
or subswarms (K)

100 200

Unknowns and
variables evaluated

S, u, C1, C2,
PSO behavioral parameters

f1, f2, f3, q1, q2, q3,
q4, q5, q6, T1, T3, T5,
TVD, DKOP, DB and DD

Wellbore trajectory
variables

Constraints S: 20 to 70
u: �0.5 to 0
C1: �0.5 to 0
C2: 0e4

Presented in Table 2
i

dimension, is adjusted by the calculated velocity to provide the
particle values to test in the next iteration of the model.

3.2. Meta optimization algorithms

Tuning the particle swarm optimization algorithm parameters
has great impact on its efficiency. This fact is well established in the
literature (e.g. Pedersen, 2010a,b). Meta optimization is an opti-
mization method to tune the behavioral parameters of another
optimization method (Fig. 5). Behavioral parameters are those that
control the search behavior of an optimization algorithm (e.g. the
velocity components in the PSO algorithm).

Mercer and Sampson (1978) used Meta optimization to find
optimum genetic algorithm (GA) parameters. Meta optimization
may be interchangeably referred to by other names such as “Meta
evaluation”, “Super optimization”, “Automated parameters cali-
bration” and “Hyper heuristic”.

Some optimization methods such as GA and differential evolu-
tion (DE) have some parameters specifying the behavior and effi-
ciency of the optimization algorithm for a certain problem, which
must be determined. Determining these parameters manually can
be a difficult and time consuming procedure. Furthermore, it often
fails to provide a good perspective regarding their effects on the
algorithm's efficiency. By changing behavioral parameters of an
optimization method and graphing the algorithm operation, their
impacts on the searching algorithm's performance can be seen.
Such procedures are only realistic for problemswhich can be solved
quickly. When a problem involves many parameters, the required
time for solving the calculations increases exponentially as the
number of parameters increases. So a powerful and effective
method is absolutely needed to search the n-dimensional space of
the behavioral parameters. Meta optimization is a simple way of
finding good behavioral parameters for an optimizer by applying
another optimizer to tune the behavioral parameters.

Meta optimized GA techniques were applied by Grefenstette
(1986) and Keane (1995). Meissner et al. (2006) and Pedersen
and Chipperfield (2010) applied Meta optimized PSO techniques.
Pedersen and Chipperfield (2010) also applied Meta optimized DE.
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Meta optimized ant colony optimization was applied by Birattari
et al. (2002), and Smit and Eiben (2009) compared various tech-
niques of Meta optimization.

3.3. Tuning behavioral parameters in PSO meta optimization

The operation and efficiency of PSO depends upon the behavioral
algorithm parameters. Meta optimization is applied in the model to
tune the behavioral parameters of PSO. In Meta optimization for the
wellbore trajectory design explored here, two PSO algorithms are
applied. The first PSO algorithm with its swarms (i.e., referred to
here as the “Superswarm”), tune and optimize the PSO behavioral
Fig. 8. Box-and-whisker plots for (a) tuned-PSO algorithm run 1 and (b) non-tuned PSO algo
for each of fifteen variables and the TMD objective function in both cases, with the red horizo
two quartiles of the distribution (i.e. the edges of the box are the 25th and 75th percentiles
shown as red crosses. (For interpretation of the references to color in this figure legend, th
parameters, while the second PSO algorithm (i.e., referred to here as
the “Subswarm”) tries to find optimum parameters to solve the
objective function. This follows the methodology proposed by
Onwunalu (2010, his chapter 4), where a more detailed description
of the Superswarm and Subswarm components are provided. Meta
optimization can either be used to evaluate certain benchmark or
known reference problems (e.g., Pedersen, 2010a,b) and extrapolate
behavioral parameters from those problems, or, it can be applied in
methodologies that aim to solve the problem directly.

In thefirst approach, it is assumed that behavioral parameters that
have previously been applied to benchmark problems are suitable for
other problems, and specifically the problem in hand. This was the
rithm each run ten times with 200 iterations. These plots show the statistical dispersion
ntal line within the box representing the median value and the box showing the middle
). Whiskers extend to the outer limits of the distribution excluding outliers, which are
e reader is referred to the web version of this article.)



Table 8
Comparison between PSO, GA, WELLDES optimizations and conventional method
for designing the trajectories of deviated wellbores.

Method PSO design
This study

Conventional
design From
Table 4 Shokir
et al. (2004)

WELLDES design
From Table 4
Shokir et al.
(2004)

GA design
From Table 4
Shokir et al.
(2004)

HD, ft. 2500 2500 2500 2500
f1, � 10.0 15 13.92 13.77
f2, � 40.0 45 40.02 42.131
f3, � 90.0 90 90.05 90
q1, � 270.0 e 280.1 279.976
q2, � 280.0 e 280.1 279.72
q3, � 275.953 e 280.1 275.02
q4, � 331.545 e 332.4 332.3
q5, � 340.0 e 332.3 334.32
q6, � 355 e 332.5 355
T1, �/100 ft. 0.829 0.9 0.7 1.675
T3, �/100 ft. 1.666 2 1.2 1.431
T5, �/100 ft. 3.243 3.5 2.6 2.413
DD, ft. (TVD) 7000 6600 6498.7 6804.37
DB, ft. (TVD) 10,200 11,260 10,003.5 10,004.48
DKOP, ft. (TVD) 1000 625 627 987.975
TMD, ft. 15,023.6 15,565 15,498 15,496.7
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approach used in this study (Table 2). AMeta optimization consists of
three elements; Superswarm, Subswarmand anobjective function, or
functions, which are optimized (in the model described that is a mini
mization) by Subswarms. Each set of Superswarm particles is related
to a set of Subswarms. To evaluate a Superswarm's quality, the sub-sw
arm algorithm is run and the final optimumvalue found is attributed
to its super-swarm, as shown in the optimization flowchart (Fig. 6).
Table 2 shows theMeta optimization parameter setup for a 5-dimensi
onal problem presented by Pedersen and Chipperfield (2010). The nu
mber of swarms (S) represents the number of times particle positions
are adjustedby thevelocity function ineach iterationof thealgorithm.

4. Optimization results for wellbore trajectory study

Applying a Meta-heuristic approach involving a PSO Meta opti-
mization algorithm (i.e., using a higher-level PSO algorithmdesigned
to optimize a lower-level PSO algorithm), and considering a series of
constraints imposedon the examplewellbore objective (Table 1), the
results presented below highlight how this approach can be used to
Fig. 9. Sampling history for the particle swarm optimization algorithm applied in this study
the length of the horizontal is a constant, so it does not vary through the optimization proces
effectively minimize true measured depth (TMD), the objective
function, of the wellbore using the radius of curvature method.
4.1. PSO behavioral parameters established by superswarms

The values of the inertia (W), cognitive (C1), social (C2) and
number of swarms (S) behavioral parameters for the particle
swarm algorithm used for the Superswarm in the Meta optimiza-
tion are listed in Table 3. These behavioral parameters are con-
strained in the Meta analysis to the ranges specified in Table 4 and
those ranges are searched via repeated iterations to find the opti-
mum values for each of these behavioral parameters.

In the results of theMeta analysis reported in this study, just five
particle positions (Nsuper ¼ 5) searched the five-dimensional space
of the model (i.e. four behavioral parameters plus the unknown
TMD) to find optimum behavioral parameters and the Meta model
was iterated one hundred times (K ¼ 100). The lower number for S
ultimately used than the 47 (i.e., Nsuper ¼ 47) suggested in Table 3
was adopted because it reduced computation time, yet still pro-
duce an improvement on the non-tuned PSO algorithm. The
behavioral-parameter space searched by the Meta optimization, i.e.
the constraints applied to S, W, C1 and C2 are listed in Table 4.

To derive more statistically-reliable optima, the Meta optimi-
zation algorithm is iterated one hundred times in each run and the
process duplicated in three separate runs to demonstrate that the
results are reproducible (Table 5).

The three optimum points obtained for the behavioral param-
eters represents the “tuning” process (Table 6). Tuning refers to the
procedure of finding the most appropriate input/behavioral pa-
rameters for an evolutionary optimization algorithm. Because of
implicit answers in Meta-heuristic optimization, the small varia-
tions in the optima values obtained by each of the three runs of the
Meta optimization algorithm is acceptable, and to be expected.
4.2. Tuned PSO optimization results from subswarms

One set of the behavioral parameters listed in Table 6 is then used
as input for the tuned PSO algorithm for the sixteen-variable di-
mensions of thewell trajectoryproblem. In the analysis shown in this
study the results of “Meta run 1”were used as behavioral-parameter
to the generic wellbore trajectory optimization problem. Note parameter P1 in this case,
s, although in other cases it could be varied. The example shown is for a non-tuned case.



Fig. 10. A, B and C represent Meta-optimization Runs 1, 2 and 3, respectively. These runs were conducted to establish optimal PSO behavioral parameters for the wellbore trajectory
algorithm. The horizontal axes show the number of iterations in all component graphics.
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input for the tunedPSOoptimizer. In the tuned PSOanalysis reported
in this study sixty-five particle positions (Nsuper ¼ 65) searched the
sixteen-dimensional spaceof themodel tofind theoptimumTMDfor
the well trajectory, and the tuned model was iterated two hundred
times (K¼ 200) for the swarms to obtain an optimized TMD solution.

Fig. 7 shows the performance of the tuned and non-tuned PSO
algorithms in reducing the TMD value of the wellbore trajectory (i.e.,
equation (7)). This figure illustrates the TMD value in each iteration of
the algorithms versus the iteration number. Fig. 7 highlights that the
tuned-parameter algorithms lead to better optimum values being
found, and thosealgorithms convergemore rapidly to thoseoptima, in
comparisonwith thenon-tunedparameteralgorithms.For instance, in
Fig. 7, the tuned-parameter algorithms all reached a 15,100 solution or
better within 25-subswarm iterations, while the non-tuned-param
eter algorithm runs did not reach a 15,100 solution until some 75 it-
erations. Thereforewe conclude that the drilling trajectories designed
using a PSO algorithm based upon behavioral parameters tuned using
Meta optimization (Table 6) are improved and found more quickly.

A summary of the setup for the Meta and tuned optimization
steps is listed in Table 7.

Box-and-whisker plots (Fig. 8) confirm that the results shown in
Fig. 7 are reproducible. In the tuned PSO box-and-whisker plot
(Fig. 8(a)) the behavioral parameters from tuned run 1 (Table 6)
were applied to ten separate evaluations of the algorithm, and the
values of the 15 variables and the TMD objective function involved
in each solution of the wellbore trajectory problem were recorded
to form the statistical distributions on which the plots are based. In
the non-tuned PSO box-and-whisker plot (Fig. 8(b)) the behavioral
parameters from non-tuned run (Table 6) were applied to ten
separate evaluations of the algorithm and the values of the 16
variables involved in the wellbore trajectory problem were recor-
ded to form the statistical distributions on which the plot is based.
It is clear when comparing Fig. 8(a) and (b) that the tuned-PSO
algorithm found a better optimum TMD for the wellbore trajec-
tory with much less dispersion in the values of each variable
involved. The results shown in Figs. 7 and 8 together show that the
tuned-PSO algorithm finds it optimum value much more rapidly
and effectively than the non-tuned PSO algorithm.

Table 8 lists a comparison of the results for the tuned PSO al-
gorithm applied in this studywith the results of Shokir et al. (2004),
including the WELLDES program (Ahmed, 2000), the conventional
wellbore trajectory planning method and the genetic algorithm.

5. Discussion

Fig. 9 shows how the PSO algorithm navigates through param-
eter space in each dimension. In this figure, positions of individual
particles in each iteration are plotted versus the iteration number.
This figure has 15 tiles showing the 15 parameters that are being
perturbed to obtain an optimum solution. The tiles in Fig. 9 display
dimensionless scaled parameters values (0, 1) in the vertical axis
and iteration numbers (0, 200) in the horizontal axis. The trends
shown for each parameter in Fig. 9 confirm that the PSO algorithm
as applied in this study is able to maintain population diversity.

Alteration in variable values and their aggregation to find the
optimum answer can be seen for each iteration in Fig. 9, showing
that non-tuned PSO runs do converge to a solution, but take a
significant number of iterations to do so. Monitoring the Fig. 9
parameter performance charts, makes it possible to determine
whether searching power of the PSO algorithm in n-dimensional
space seeking an optimum solution has successfully concluded or
not. Searching concludes when all points in all performance charts
converge to a single point (the optimum answer).

Results fromtheMetaoptimizedPSOdeviatedwellbore trajectory
design are compared (Table 8) to the results publishedby Shokir et al.
(2004) for a conventional wellbore design (i.e., based on a trial and
error method) the WELLDES program (i.e., based on a sequential
unconstrained minimization technique, Ahmed (2000)) and the ge-
neticalgorithmmethod.Theoptimumsolutionproposedby theMeta
optimized or tuned PSO algorithm (i.e., TMD ¼ 15,023.6 ft.) out-
performs the other algorithms. The tuned PSO algorithm optimum
result (Table 8) also satisfies all of the constraints and limitations
imposed on the generic wellbore trajectory.

The tuning of the behavioral parameters (S, W, C1, C2) is the
objective of the Meta optimization process. The Meta optimization
algorithm involves three runs of the which are averaged to provide
a provisional value for the TMD objective function. Fig.10 illustrates
example outputs of behavioral parameters and the objective
function for three runs of the Meta optimizer.
6. Conclusions

Detailed deviated wellbore trajectory design can be successfully
optimized using recently developed Meta-heuristic particle swarm
algorithms. This is demonstrated in this study using a generic
deviated well design (i.e. based upon the example published by
Shokir et al. (2004) for a deviated well drilled in Egypt).

The specific conclusions drawn from this study are:

� Behavioral-parameter tuning has a significant effect on the
convergence of the Meta-heuristic particle swarm optimization
algorithm. This is clear from the comparisons between tuned and
non-tuned runs shown in Fig. 7. The search capability of the PSO
algorithm decreases as the dimensions of a problem increase. In
such cases, tunedPSObehavioral parameters tend toachievebetter
global optimization results faster than non-tuned PSO algorithms.
A conclusion that is supported by the results illustrated in Figs. 7
and 8. The results of this study therefore support the more gen-
eral conclusion that computational benefits are likely to be obta
ined by tuning the behavioral parameters of a PSO algorithms app
lied to complex problems involving multiple non-linear variables.

� A tuned PSO algorithm proved to be a powerful and rapid
optimization method for solving the non-linear deviated well-
bore trajectory problem tackled in this study.

� PSO is an evolutionary algorithm based on gaining system
knowledgemaking it a promisingmethod for potentially solving
a diverse range of engineering problems, particularly when
applied with Meta-optimization routines.
Nomenclature

Wellbore trajectory system variable definitions (modified after
Shokir et al., 2004). Vertical plane variables are illustrated in Fig. 2

f1, f2, f3 first, second, and third hold angles, degrees
q1 azimuth angle at kick off point, degrees
q2 azimuth angle at end of first build portion, degrees
q3 azimuth angle at end of first hold section, degrees
q4 azimuth angle at end of second build or drop portion,

degrees
q5 azimuth angle at end of second hold section, degrees
q6 azimuth angle at end of third build portion, degrees
T1 dogleg severity of first build portion, �/100 feet
T2 dogleg severity of first hold portion, �/100 feet
T3 dogleg severity of second build or drop portion, �/100 feet
T4 dogleg severity of second hold section, �/100 feet
T5 dogleg severity of third build portion, �/100 feet
TVD true vertical depth of the well at total depth (TD), feet
DKOP true vertical depth of kick off point, feet
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DD true vertical depth of the well at the top of drop-off
section (top of second build section), feet

DB true vertical depth of the well at the end of drop-off
section (top of third build section), feet

HD lateral length (horizontal length), feet
clc
clear
%Place the final optimized result (i.e.16 variables plus TM
to draw boxplots (see Figure 8)
IU=zeros(17,100);
COUNTER=1;
%Run the whole algorithm RWTPth times. For one exec
average of multiple runs RWTPh should be greater than 1 
RWTPth=1;
while COUNTER<RWTPth+1 
k=0;h=0;t=0;a1=0;E1=size(1,400);mat2=size(60,60);v = siz
mat = size(60, 60);vi=size(60,60);pv=size(60);E=size(60);n
G=size(200); 
%For the initial meta-optimization step, values for PSO b
2010 are applied. Subsequently the values for the beha
solution in Table 6 (i.e. Run1) are applied.
c1=-0.414658484;% Pedersen(2010)=0.2699;
c2=2.354873241;% Pedersen(2010)=4.2373;
w=0;% Pedersen(2010)=-0.67;
%Number of variables in problem.
x = 16;
%For the initial meta-optimization step the number of pa
Subsequently the number of swarms applied is 65 from the
ns=65;
iterations=200;
format long
disp('Random TMD');
%%
%Variable constraints: lower limits cl; upper limits cu
cl(1) = 2500;cl(2) = 10;cl(3) = 40;cl(4) = 90;cl(5) = 270;
cl(6) = 270;cl(7) = 270;cl(8) = 330;cl(9) = 330;cl(10) = 355;
cl(11) = 0;cl(12) = 0;cl(13) = 0;cl(14) = 6000;cl(15) = 10000
cl(16) = 600;cu(1) = 2500;cu(2) = 20;cu(3) = 70;cu(4) = 95;
cu(5) = 280;cu(6) = 280;cu(7) = 280;cu(8) = 340;cu(9) = 34
cu(10) = 360;cu(11) = 5;cu(12) = 5;cu(13) = 5;cu(14) = 700
cu(15) = 10200;cu(16) = 1000;
%Initialize the particle positions are generated with a unifor
upper limits of each variable.
while n<ns; 
for i = 1 : x
v(i,n+1) = cl(i) + (cu(i)-cl(i)).*rand;
end
%Wellbore trajectory radius of curvature calculations
rad = (3.14159 / 180);
R1 = 100 / (v(11, n + 1)* rad);
R3 = 100 / (v(12, n + 1)* rad);
R5 = 100 / (v(13, n + 1)* rad);
D1 = R1 * (((v(6, n + 1) - v(5, n + 1)) * rad) ^ 2 * (sin(v(2, n 

+ ((v(2, n + 1) * rad) ^ 2)) ^ (0.5);
D2 = (v(14, n + 1) - v(16, n + 1) - D1 * (sin(v(2, n + 1) * ra
rad);
D3 = R3 * (((v(8, n + 1) - v(7, n + 1)) * rad) ^ 2 * (sin((v(3, n

+ v(2, n + 1)) * rad / 2)) ^ 4 + ((v(3, n + 1) - v(2, n + 1)) * 
D4 = (v(15, n + 1) - v(14, n + 1) - D3 * (sin(v(3, n + 1) * rad
1) * rad)) / cos(v(3, n + 1) * rad);
D5 = R5 * (((v(10, n + 1) - v(9, n + 1)) * rad) ^ 2 * (sin((v(4, 

+ ((v(4, n + 1) - v(3, n + 1)) * rad) ^ 2) ^ (0.5);
% z calculates the TMD of the entire wellbore
z = v(1, n + 1) + D1 + D2 + D3 + D4 + D5 + v(16, n + 1);
cas1 = v(16, n + 1) + D1 * (sin(v(2, n + 1) * rad) / (v(2, n + 1
cas2 = cas1 + D2 * cos(v(2, n + 1) * rad) + D3 * ((sin(v(3, n
n + 1)) * rad));
cas3 = cas2 + D4 * cos(v(3, n + 1) * rad) + D5 * ((sin(v(4, n
n + 1)) * rad));
Appendix A. MATLAB code listing for meta-optimized particle
swarm algorithm to solve deviated wellbore trajectories using
the radius of curvature method

The following MATLAB code evaluates the non-tuned PSO al-
gorithms developed and applied in this study. It is annotated with
comments to clarify the function of each section of the code.
D objective function into the IU matrix, which is used 

ution of the algorithm RWTPh equals 1. To find an 
(e.g. 10 to provide sufficient data for boxplots)

e(60,60);
 = 0;

ehavioral parameters c1, c2 and w from Pederson 
vioral parameters c1, c2 and w from the best TMD 

rticle swarms (ns) applied is 45 (Pedersen, 2010). 
 best TMD solution in Table 6 (i.e. Run1).

;

0;
0;

mly distributed random vector between the lower and 

+ 1) * rad / 2)) ^ 4 ...

d) - sin(0)) / (v(2, n + 1) * rad - 0)) / cos(v(2, n + 1) * 

 + 1)...
rad) ^ 2) ^ (0.5);
) - sin(v(2, n + 1) * rad)) / (v(3, n + 1) * rad - v(2, n + 

n + 1) + v(3, n + 1)) * rad / 2)) ^ 4 ...

) * rad));
 + 1) * rad) - sin(v(2, n + 1) * rad)) / ((v(3, n + 1) - v(2, 

 + 1) * rad) - sin(v(3, n + 1) * rad)) / ((v(4, n + 1) - v(3, 



phi1=v(2,n+1);
phi2=v(3,n+1);
phi3=v(4,n+1);
Hold1=D2*cos(phi1*rad);
Hold2=D4*cos(phi2*rad) ;
tvdbuild1=(D1*(sin(rad*(phi1))-sin(rad*0)))/(phi1*rad);
tvddrop=D3*(sin(rad*phi2)-sin(rad*phi1))/((phi2-phi1)*rad);
tvdbuild2=D5*(sin(rad*phi3)-sin(rad*phi2))/((phi3-phi2)*rad);
TVD=tvdbuild1+tvdbuild2+tvddrop+Hold1+Hold2+v(16,n+1);
%The following wellbore constraints are also applied.
if D1 > 0 && D2 > 0 && D3 > 0 && D4 > 0 && D5 > 0 && cas1 > 1800 &&...
cas1 < 2200 && cas2 > 7200 && cas2 < 8700 && cas3 > 10835 &&...
cas3 < 10885 && TVD>10850 && TVD<10900
%Values of matrix v are only passed to matrix mat if they satisfy all the wellbore constraints (i.e. provide a valid 
solution).
for i = 1 : x
mat(i, n+1) = v(i, n + 1);
end
mat(i+1, 1 + n) = z;
n = n + 1;
%Display the initial values which satisfy all constraints
disp(z);    
end
end
disp('Search for better answers');
%Start timer
tic
%%
% Input first column of mat as best global values into G. If better solutions are found in subsequent runs then 
the values in matrix G column 1 are replaced with those better values.
for i=1:x
G(i,1)=mat(i,1);
end
% The best global value for the TMD objective function is placed in GV and replaced with better values as they 
are found.
GV=mat(17,1);
%Initialize the matrix holding each particles best known position (i.e. pi) to each particles initial position
pi=size(60,60);
for n=1:ns  
for i = 1 : x+1
pi( i,  n) = mat(i, n );
end
end
%Update each particle swarm's best known position.
s=ns;
for i=1:s
if pi(17,i)<GV
for j=1:x
G(j,1)=pi(j,i);
end
GV=pi(17,i);
end
end
%Initialize each particle's velocity, vi, with a uniformly distributed random vector between the lower and upper 
limits of each variable.
for n=1:s
for i=1:x
pv(i)=cu(i)-cl(i);
vi( i,  n)=-pv(i) + (2*pv(i)).*rand;
end
end
%The algorithm is repeated for the specified number of iterations.
ite=0;
tic
while ite<iterations
%For each particle i
for i=1:s;
%For each dimension (variable) d
for d=1:x;
%Select uniformly distributed random numbers with which to adjust behavioral parameters applied to each 
particle's velocity.
rp=rand;
rg=rand;
%Update each particle's velocity.
vi( d, i)=w* vi(d,i) + c1 *rp* (pi(d,i)-mat(d,i)) + c2* rg* (G(d)-mat(d,i));
end
%Update each particle's position with the newly adjusted velocity
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%Test that each adjusted variable position is within its upper and lower limits.
for d=1:x;
if mat(d,i)+vi(d,i)<cl(d)
mat2(d,i)=cl(d);
elseif mat(d,i)+vi(d,i)>cu(d)
mat2(d,i)=cu(d);
else
mat2(d,i)=mat(d,i)+vi(d,i); 
end
end
%Evaluate wellbore trajectory for newly generated particle positions.
rad = (3.14159 / 180);
R1 = 100 / (mat2(11, i) * rad);
R3 = 100 / (mat2(12, i) * rad);
R5 = 100 / (mat2(13, i) * rad);
D1 = R1 * (((mat2(6, i) - mat2(5, i)) * rad) ^ 2 * (sin(mat2(2, i) * rad / 2)) ^ 4 + ((mat2(2, i ) * rad) ^ 2)) ^ (0.5);
D2 = (mat2(14, i) - mat2(16, i) - D1 * (sin(mat2(2, i) * rad) - sin(0)) / (mat2(2, i) * rad - 0)) / cos(mat2(2, i) * rad);
D3 = R3 * (((mat2(8, i) - mat2(7, i)) * rad) ^ 2 * (sin((mat2(3, i) + mat2(2, i)) * rad / 2)) ^ 4 + ((mat2(3, i) - mat2(2, 
i)) * rad) ^ 2) ^ (0.5);
D4 = (mat2(15, i) - mat2(14, i) - D3 * (sin(mat2(3, i) * rad) - sin(mat2(2, i) * rad)) / (mat2(3, i) * rad - mat2(2, i) * 
rad)) / cos(mat2(3, i) * rad);
D5 = R5 * (((mat2(10, i) - mat2(9, i)) * rad) ^ 2 * (sin((mat2(4, i) + mat2(3, i)) * rad / 2)) ^ 4 + ((mat2(4, i) -
mat2(3, i)) * rad) ^ 2) ^ (0.5);
z = mat2(1, i) + D1 + D2 + D3 + D4 + D5 + mat2(16, i);   
mat2(17,i)=z; 
cas1 = mat2(16, i) + D1 * (sin(mat2(2, i) * rad) / (mat2(2, i) * rad));
cas2 = cas1 + D2 * cos(mat2(2, i) * rad) + D3 * ((sin(mat2(3, i) * rad) - sin(mat2(2, i) * rad)) / ((mat2(3, i) -
mat2(2, i)) * rad));
cas3 = cas2 + D4 * cos(mat2(3, i) * rad) + D5 * ((sin(mat2(4, i) * rad) - sin(mat2(3, i) * rad)) / ((mat2(4, i) -
mat2(3, i)) * rad));
phi1=mat2(2,i);
phi2=mat2(3,i);
phi3=mat2(4,i);
Hold1=D2*cos(phi1*rad);
Hold2=D4*cos(phi2*rad) ;
tvdbuild1=(D1*(sin(rad*(phi1))-sin(rad*0)))/(phi1*rad);
tvddrop=D3*(sin(rad*phi2)-sin(rad*phi1))/((phi2-phi1)*rad);
tvdbuild2=D5*(sin(rad*phi3)-sin(rad*phi2))/((phi3-phi2)*rad);
TVD=tvdbuild1+tvdbuild2+tvddrop+Hold1+Hold2+mat2(16,i);
%The following wellbore constraints are also applied.
if D1 > 0 && D2 > 0 && D3 > 0 && D4 > 0 &&...
D5 > 0 && cas1 > 1800 && cas1 < 2200 && cas2 > 7200 &&...
cas2 < 8700 && cas3 > 10835 && cas3 < 10885  &&...
TVD > 10850 && TVD < 10900 
%If constraints are all satisfied the variable values from matrix mat2 are transferred into matrix mat.
for d=1:x
mat(d,i)=mat2(d,i);
end
mat(17,i)=mat2(17,i);
%Update the particles best known position
if z<pi(17,i)
for d=1:x
pi(d,i)=mat(d,i); 
end
pi(17,i)=z;
end
%Update the swarm's best known position
if z<GV
for d=1:x
G(d)=mat(d,i); 
end
GV=z;
a1=TVD;
end
end
end
ite=ite+1;
figure (1)
E1(ite)=GV;
plot(1:ite,E1(1:ite),'b')
hold on
xlabel('Number of Iterations')
ylabel('True Measured Depth TMD (ft)')
end
%Place G matrix into the IU matrix for each run of the algorithm.
IU(1:16,COUNTER)=G(1:16,1);
IU(17,COUNTER)=GV;
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COUNTER=COUNTER+1;
end
disp('----------------------------------')
disp('           The Optimum values found by PSO are:           ')
disp('----------------------------------')
disp('HP='); disp('phi1=');disp('phi2='); disp('phi3=');
disp('theta1=');disp('theta2='); disp('theta3=');disp('theta4=');
disp('theta5='); disp('theta6=');disp('T1='); disp('T3='); 
disp('T5='); disp('Dd=');disp('Db='); disp('Dkop=');
G(1:16,1)
disp('TMD=');
disp(GV);
disp('TVD=');
disp(a1);
toc
%If more than one run of the algorithm has been calculated (i.e.RWTPth>1) draw the boxplots.
if COUNTER>2
%Draw Boxplots
subplot(4,4,1);boxplot(IU(2,1:RWTPth));
xlabel('Phi1 (degree)')
subplot(4,4,2);boxplot(IU(3,1:RWTPth));
xlabel('Phi2 (degree)')
subplot(4,4,3);boxplot(IU(4,1:RWTPth));
xlabel('Phi3 (degree)')
subplot(4,4,4);boxplot(IU(5,1:RWTPth));
xlabel('Theta1 (degree)')
subplot(4,4,5);boxplot(IU(6,1:RWTPth));
xlabel('Theta2 (degree)')
subplot(4,4,6);boxplot(IU(7,1:RWTPth));
xlabel('Theta3 (degree)')
subplot(4,4,7);boxplot(IU(8,1:RWTPth));
xlabel('Theta4 (degree)')
subplot(4,4,8);boxplot(IU(9,1:RWTPth));
xlabel('Theta5 (degree)')
subplot(4,4,9);boxplot(IU(10,1:RWTPth));
xlabel('Theta6 (degree)')
subplot(4,4,10);boxplot(IU(11,1:RWTPth));
xlabel('T1 (degree/100ft)')
subplot(4,4,11);boxplot(IU(12,1:RWTPth));
xlabel('T3 (degree/100ft)')
subplot(4,4,12);boxplot(IU(13,1:RWTPth));
xlabel('T5 (degree/100ft)')
subplot(4,4,13);boxplot(IU(14,1:RWTPth));
xlabel('Dd (ft)')
subplot(4,4,14);boxplot(IU(15,1:RWTPth));
xlabel('Db (ft)')
subplot(4,4,15);boxplot(IU(16,1:RWTPth));
xlabel('Dkop (ft)')
subplot(4,4,16);boxplot(IU(17,1:RWTPth)); 
xlabel('True Measured Depth (ft)') 
end
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Appendix B. MATLAB code listing for meta-optimized (tuned)
particle swarm algorithm to solve deviated wellbore
trajectories using the radius of curvature method

The following MATLAB code evaluates the Meta-optimized
(tuned) PSO algorithms developed and applied in this study. It is
annotated with comments to clarify the function of each section of
the code.
Section 1
tic
clc
clear
%WMeta, C1Meta and C2Meta were picked up form pederson paper for problems with 5 dimensions
WMeta=-0.3593;C1Meta=-0.7238;C2Meta=2.0289;
PI=size(60,60);Global=size(200,1);ITE=0;ITERATIONS=200;VI=size(60,60);PV=size(60);MAT=size(60,60);Goo
dValues=zeros(200,200);
%Constraints
%C1
CL(1)=-0.5;CU(1)=0;
%C2
CL(2)=0;CU(2)=4;
%w
CL(3)=-0.5;CU(3)=0;
%ns 
CL(4)=20;
CU(4)=70;
%number of Super-swarms %  
NS=5; % Pederson (2010) suggested NS=47.  That value of NS was tried but took too long in this problem for 
the benefits it provided.
%%
%Initialize the particle's position with a uniformly distributed random vector between the lower and upper 
boundaries of the search-space.
for j=1:NS
for i=1:4
MAT(i,j)=CL(i) + (CU(i)-CL(i)).*rand;
end
end
%round the number of swarms to a whole number
for j=1:NS
MAT(4,j)=round(MAT(4,j));
end
c1=MAT(1,1);
c2=MAT(2,1);
w=MAT(3,1);
ns=MAT(4,1);
%Calculate TMD using proposed input parameters
%GVmeta=TMDCalculation(c1,c2,w,ns);
for n=1:NS
c1=MAT(1,n);
c2=MAT(2,n);
w=MAT(3,n);
ns=MAT(4,n);
MAT(5, n )=TMDCalculation(c1,c2,w,ns);
end
%%
%SUPERSWARM
%Initialize the particle's best known position to its initial position.
for n=1:NS
for i = 1 : 5
PI( i,  n) = MAT(i, n );
end
end
% Select first particle as best global value. 
% Then compare that particle with other particles to find best global position.
for i=1:4
Global(i,1)=PI(i,1);
end
GVmeta=PI(5,1);
%Test to find best global value
for i=1:NS
if PI(5,i)<GVmeta
for j=1:4



Global(j,1)=PI(j,i);
end
GVmeta=PI(5,i);
end
end
%Initialize the particle's velocity.
for n=1:NS
for i=1:4
PV(i)=CU(i)-CL(i);
VI( i, n)=-PV(i) + (2*PV(i)).*rand;
end
end
%Repeat for the specified number of iterations.
while ITE<ITERATIONS
%For each superswarm particle.
for i=1:NS;
%For each dimension / variable.
for d=1:4;
%Select uniform random numbers with which to adjust behavioral parameters.
rp=rand;
rg=rand;
%Update each particle's velocity.
VI( d, i)=WMeta* VI(d,i) + C1Meta *rp* (PI(d,i)-MAT(d,i)) + C2Meta* rg* (Global(d)-MAT(d,i));   
end
%Update each particle's position ensuring it is within the specified upper and lower constraints.
for d=1:4;
if MAT(d,i)+VI(d,i)<CL(d)
MAT(d,i)=CL(d);
elseif MAT(d,i)+VI(d,i)>CU(d)
MAT(d,i)=CU(d);
else
MAT(d,i)=MAT(d,i)+VI(d,i); 
end
end
%Number of swarms could be input as a fixed integer. Here the algorithm searches for number for the optimum 
number of swarms too. Hence, it is necessary to round that number.
MAT(d,i)=round(MAT(d,i));
%%
%SUBSWARM 
c1=MAT(1,i);
c2=MAT(2,i);
w=MAT(3,i);
ns=MAT(4,i);
%Calls to wellbore trajectory calculation function (see section 2 of this code listing).
MAT(5, i )=TMDCalculation(c1,c2,w,ns);
%GVmeta=TMDCalculation(c1,c2,w,ns) 
%Update best known position of each particle.
if MAT(5,i)<PI(5,i)
for d=1:4
PI(d,i)=MAT(d,i); 
end
PI(d+1,i)=MAT(5,i);
end
end
%Update best global value by comparing updated best position(so far) of each particle relative to best global 
value recorded (so far).
for i=1:NS
if PI(5,i)<GVmeta
for j=1:4
Global(j,1)=PI(j,i);
end
GVmeta=PI(5,i);
end
end
Global(5,1)=GVmeta;
%Best positions (so far) are saved into the GoodValues matrix
for j=1:5
GoodValues(j,ITE+1)=Global(j,1);
end
%Plot particle movements for each iteration
figure (1)
%C1
subplot(2,3,1)
for i=1:1:NS
plot(ITE,MAT(1,i));
hold on
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ylabel 'Cognitive (C1)'
end
%C2
subplot(2,3,2)
for i=1:1:NS
plot(ITE,MAT(2,i));
hold on
xlabel 'Number of Iterations'
ylabel 'Social (C2)'
end
%W
subplot(2,3,3)
for i=1:1:NS
plot(ITE,MAT(3,i));
hold on
xlabel 'Number of Iterations'
ylabel 'Inertia (W)'
end
%Number of swarms.
subplot(2,3,4)
for i=1:1:NS
plot(ITE,MAT(4,i));
hold on
xlabel 'Number of Iterations'
ylabel 'Number of Swarms (S)'
end
%Good Values
subplot(2,3,5)
for i=1:1:NS
plot(1:ITE,GoodValues(5,1:ITE));
hold on
xlabel 'Number of Iterations'
ylabel 'TMD (ft)'
end
ITE=ITE+1;
end
toc

Section 2(subcodes):
function [GVmeta]=TMDCalculation(C1,C2,W,NS)
%Input parameters.
ns=NS;iterations=70;c1=C1;c2=C2;w=W;
x = 16;n = 0;GVmeta=0;
mat2=size(60,60);v = size(60,60);mat = size(60, 60);vi=size(60,60);
pv=size(60);G=size(200);
format long
% Repeat calculations three times and then calculate an average.
for COUNTER=1:3
%Constraints
cl(1) = 2500;cl(2) = 10;cl(3) = 40;cl(4) = 90;cl(5) = 270;
cl(6) = 270;cl(7) = 270;cl(8) = 330;cl(9) = 330;cl(10) = 355;
cl(11) = 0;cl(12) = 0;cl(13) = 0;cl(14) = 6000;cl(15) = 10000;
cl(16) = 600;cu(1) = 2500;cu(2) = 20;cu(3) = 70;cu(4) = 95;
cu(5) = 280;cu(6) = 280;cu(7) = 280;cu(8) = 340;cu(9) = 340;
cu(10) = 360;cu(11) = 5;cu(12) = 5;cu(13) = 5;cu(14) = 7000;
cu(15) = 10200;cu(16) = 1000;
while n<ns;
for i = 1 : x
v(i,n+1) = cl(i) + (cu(i)-cl(i)).*rand;
end
rad = (3.14159 / 180);
R1 = 100 / (v(11, n + 1)* rad);
R3 = 100 / (v(12, n + 1)* rad);
R5 = 100 / (v(13, n + 1)* rad);
D1 = R1 * (((v(6, n + 1) - v(5, n + 1)) * rad) ^ 2 * (sin(v(2, n + 1) * rad / 2)) ^ 4 ...
+ ((v(2, n + 1) * rad) ^ 2)) ^ (0.5);

D2 = (v(14, n + 1) - v(16, n + 1) - D1 * (sin(v(2, n + 1) * rad) - sin(0)) / (v(2, n + 1) * rad - 0)) / cos(v(2, n + 1) * 
rad);
D3 = R3 * (((v(8, n + 1) - v(7, n + 1)) * rad) ^ 2 * (sin((v(3, n + 1)...
+ v(2, n + 1)) * rad / 2)) ^ 4 + ((v(3, n + 1) - v(2, n + 1)) * rad) ^ 2) ^ (0.5);

D4 = (v(15, n + 1) - v(14, n + 1) - D3 * (sin(v(3, n + 1) * rad) - sin(v(2, n + 1) * rad)) / (v(3, n + 1) * rad - v(2, n + 
1) * rad)) / cos(v(3, n + 1) * rad);
D5 = R5 * (((v(10, n + 1) - v(9, n + 1)) * rad) ^ 2 * (sin((v(4, n + 1) + v(3, n + 1)) * rad / 2)) ^ 4 ...
+ ((v(4, n + 1) - v(3, n + 1)) * rad) ^ 2) ^ (0.5);

z = v(1, n + 1) + D1 + D2 + D3 + D4 + D5 + v(16, n + 1);
cas1 = v(16, n + 1) + D1 * (sin(v(2, n + 1) * rad) / (v(2, n + 1) * rad));

xlabel 'Number of Iterations'
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cas2 = cas1 + D2 * cos(v(2, n + 1) * rad) + D3 * ((sin(v(3, n + 1) * rad) - sin(v(2, n + 1) * rad)) / ((v(3, n + 1) - v(2, 
n + 1)) * rad));
cas3 = cas2 + D4 * cos(v(3, n + 1) * rad) + D5 * ((sin(v(4, n + 1) * rad) - sin(v(3, n + 1) * rad)) / ((v(4, n + 1) - v(3, 
n + 1)) * rad));
phi1=v(2,n+1);
phi2=v(3,n+1);
phi3=v(4,n+1);
Hold1=D2*cos(phi1*rad);
Hold2=D4*cos(phi2*rad) ;
tvdbuild1=(D1*(sin(rad*(phi1))-sin(rad*0)))/(phi1*rad);
tvddrop=D3*(sin(rad*phi2)-sin(rad*phi1))/((phi2-phi1)*rad);
tvdbuild2=D5*(sin(rad*phi3)-sin(rad*phi2))/((phi3-phi2)*rad);
TVD=tvdbuild1+tvdbuild2+tvddrop+Hold1+Hold2+v(16,n+1);
if D1 > 0 && D2 > 0 && D3 > 0 && D4 > 0 && D5 > 0 && cas1 > 1800 &&...
cas1 < 2200 && cas2 > 7200 && cas2 < 8700 && cas3 > 10835 &&...
cas3 < 10885 && TVD>10850 && TVD<10900
for i = 1 : x
mat(i, n+1) = v(i, n + 1);
end
mat(i+1, 1 + n) = z;
n = n + 1;
end
end
%%
for i=1:x
G(i,1)=mat(i,1);
end
GV=mat(17,1);
%Initialize each particle's best known position to its initial position.
pi=size(60,60);
for n=1:ns 
for i = 1 : x+1
pi( i,  n) = mat(i, n );
end
end
%Update the swarm's best known position
s=ns;
for i=1:s
if pi(17,i)<GV
for j=1:x
G(j,1)=pi(j,i);
end
GV=pi(17,i);
end
end
%%
%Initialize each particle's velocity with a uniform random number.
for n=1:s
for i=1:x
pv(i)=cu(i)-cl(i);
vi( i,  n)=-pv(i) + (2*pv(i)).*rand;
end
end
%Repeat for the specified number of iterations.
ite=0;
while ite<iterations
%For each particle.
for i=1:s;
%For each dimension.
for d=1:x;
%Select uniform random numbers.
rp=rand;
rg=rand;
%Update each particle's velocity.
vi( d, i)=w* vi(d,i) + c1 *rp* (pi(d,i)-mat(d,i)) + c2* rg* (G(d)-mat(d,i));
end
%Update each particle's position.
for d=1:x;
if mat(d,i)+vi(d,i)<cl(d)
mat2(d,i)=cl(d);
elseif mat(d,i)+vi(d,i)>cu(d)
mat2(d,i)=cu(d);
else
mat2(d,i)=mat(d,i)+vi(d,i); 
end
end
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%Evaluate wellbore trajectory components for each new particle.
rad = (3.14159 / 180);
R1 = 100 / (mat2(11, i) * rad);
R3 = 100 / (mat2(12, i) * rad);
R5 = 100 / (mat2(13, i) * rad);
D1 = R1 * (((mat2(6, i) - mat2(5, i)) * rad) ^ 2 * (sin(mat2(2, i) * rad / 2)) ^ 4 + ((mat2(2, i ) * rad) ^ 2)) ^ (0.5);
D2 = (mat2(14, i) - mat2(16, i) - D1 * (sin(mat2(2, i) * rad) - sin(0)) / (mat2(2, i) * rad - 0)) / cos(mat2(2, i) * rad);
D3 = R3 * (((mat2(8, i) - mat2(7, i)) * rad) ^ 2 * (sin((mat2(3, i) + mat2(2, i)) * rad / 2)) ^ 4 + ((mat2(3, i) - mat2(2, 
i)) * rad) ^ 2) ^ (0.5);
D4 = (mat2(15, i) - mat2(14, i) - D3 * (sin(mat2(3, i) * rad) - sin(mat2(2, i) * rad)) / (mat2(3, i) * rad - mat2(2, i) * 
rad)) / cos(mat2(3, i) * rad);
D5 = R5 * (((mat2(10, i) - mat2(9, i)) * rad) ^ 2 * (sin((mat2(4, i) + mat2(3, i)) * rad / 2)) ^ 4 + ((mat2(4, i) -
mat2(3, i)) * rad) ^ 2) ^ (0.5);
z = mat2(1, i) + D1 + D2 + D3 + D4 + D5 + mat2(16, i);   
mat2(17,i)=z; 
cas1 = mat2(16, i) + D1 * (sin(mat2(2, i) * rad) / (mat2(2, i) * rad));
cas2 = cas1 + D2 * cos(mat2(2, i) * rad) + D3 * ((sin(mat2(3, i) * rad) - sin(mat2(2, i) * rad)) / ((mat2(3, i) -
mat2(2, i)) * rad));
cas3 = cas2 + D4 * cos(mat2(3, i) * rad) + D5 * ((sin(mat2(4, i) * rad) - sin(mat2(3, i) * rad)) / ((mat2(4, i) -
mat2(3, i)) * rad));
phi1=mat2(2,i);
phi2=mat2(3,i);
phi3=mat2(4,i);
Hold1=D2*cos(phi1*rad);
Hold2=D4*cos(phi2*rad) ;
tvdbuild1=(D1*(sin(rad*(phi1))-sin(rad*0)))/(phi1*rad);
tvddrop=D3*(sin(rad*phi2)-sin(rad*phi1))/((phi2-phi1)*rad);
tvdbuild2=D5*(sin(rad*phi3)-sin(rad*phi2))/((phi3-phi2)*rad);
TVD=tvdbuild1+tvdbuild2+tvddrop+Hold1+Hold2+mat2(16,i);
%If all the following constraints are satisfied transfer mat2 matrix values into matrix mat.
if D1 > 0 && D2 > 0 && D3 > 0 && D4 > 0 &&...
D5 > 0 && cas1 > 1800 && cas1 < 2200 && cas2 > 7200 &&...
cas2 < 8700 && cas3 > 10835 && cas3 < 10885  &&...
TVD > 10850 && TVD < 10900 
for d=1:x
mat(d,i)=mat2(d,i);
end
mat(17,i)=mat2(17,i);
%Update each particle's best known position.
if z<pi(17,i)
for d=1:x
pi(d,i)=mat(d,i); 
end
pi(17,i)=z;
end
%Update the swarm's best known position.
if z<GV
for d=1:x
G(d)=mat(d,i); 
end
GV=z;
end
end
end
ite=ite+1;
end
GVmeta=GV+GVmeta;
end
GVmeta=GVmeta/COUNTER;
end
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