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Overview

It is essential to address uncertainties associated with individual activity
durations and costs at the planning stage of projects in order to establish
realistic project budgets and forecasts. If uncertainties are not considered
at the planning stage then difficulties (i.e. cost and time overruns) may arise
later during the project implementation stage. The repeated trial approach
of Monte Carlo simulation, integrated with network logic and critical path
analysis, offers an effective and established method for integrating risk
assessment into project schedule and cost analysis. Individual activity
durations and costs are best input to simulations as probability distributions,
or possible ranges that reflect incomplete knowledge, uncertainty or the
level of ignorance, rather than as deterministic single-point estimates.

The cost-time simulation techniques proposed here are novel in the way the
simulation output, and the intermediate calculations leading to that output,
are analysed and presented statistically. Analysis focuses on the downside
risk of time and cost overruns and their interactions. Semi-standard
deviations of calculated project cost and time probability distributions
relative to target values quantify specific downside risks associated with
such targets. The proposed techniques can be effectively applied and
tailored to small and medium-sized projects using spreadsheets backed by
Visual Basic macros without recourse to proprietary project software.

Background to Project Risk Simulation

Probabilistic risk modelling and simulation techniques integrated with
deterministic sensitivity analysis are useful and established project planning
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and management tools1. Indeed simulation continues to push back the
boundaries of science and business management in many areas2. The Monte
Carlo simulation method (see note 2 for a basic description and definition)
has its roots in the recognition by Daniel Bernouilli more than 250 years ago
that repeated trials (Bernouilli Trials) provide a statistical basis with which
to quantify events with uncertain outcomes. The theory had to wait for
computer technology to advance before the technique was first applied in
the mid-twentieth century to aid investment decisions under uncertainty 3.
Its power was then rapidly applied to many diverse fields that required
outcomes to be quantified statistically under conditions of uncertainty to aid
decision-making4. There are many applications for it in the oil & gas industry,
where dealing with high cost projects with large and diverse uncertainties is
a daily eventuality5.

The early applications of simulation techniques to project planning and
networks highlighted the discrepancies between decisions based upon
probabilistic and deterministic analysis6. Complications that frequently arise
in applying simulation models to analyse complex project networks are:
 the correlations and dependencies between time and cost and the

sensitivity of those correlations to work delays, which are often
influenced by contractual terms7

 High levels of uncertainty, incomplete knowledge and a lack of
precedence with which to benchmark the costs and durations of certain
activities8,.

 Inherent uncertainties associated with non-monetary risks (e.g. social,
environmental, political and legal impacts), which are fuzzy and not
random 9.

It is important to keep in mind that, as with deterministic methods, the
probabilistic techniques depend upon well-researched estimates for ranges
of component activity costs, times and resource requirements as their basic
input data. Failure to use validated input data to define input distributions
or over reliance on "guesstimates" will lead to unreliable results. “The
garbage” appearing to be “well turned out” in the form of computer graphics
can exacerbate the classic problem of “garbage in - garbage out”. In order to
overcome the problems associated with high uncertainty and / or ignorance
of risks associated with some component activities models are being
developed that extend the probabilistic approach by applying, for example,
game theory10, possibility theory and fuzzy numbers11, and stochastic budget
simulation12.

Despite risk management being designated as one of the eight core areas of
the Project Management Body of Knowledge (PMBOK)13, and simulation
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tools scoring highly in industry surveys as the most suitable tool for project
risk management14 literature reviews and other surveys15 have found that
these tools tend not to be used to their full potential by project managers.
The surveys suggest that the application of simulation tools is impeded by
low knowledge, skill base, and lack of commitment to training and
professional development in many organisations. Nevertheless, successful
applications of simulation techniques to real world projects continue to be
published16 , which, together with the emerging ability to build such models
rapidly on standard office software packages, suggest that they will become
more widely applied in the near future.

Few doubt now that risk simulation techniques are useful, but software
availability and transparency may be the drivers that encourage practicing
project managers rather than academics to use the techniques more widely.
Advances in personal computer processing capacities and versatile, user-
friendly spreadsheet software now make it possible for sophisticated
simulation models to be built and applied efficiently to a wide range of
projects. For a medium sized project (e.g. 20 activities performed in five
parallel sequences with complex dependencies) a model simulating costs and
time, analysing risks and critical paths can be constructed, run and evaluated,
with a little practice in a single working day. The models, results and
graphics presented in this article are all built in spreadsheet workbooks
(Microsoft Excel) with simulation and analysis manipulated by Visual Basic
(VBA) macros.

Project Risk Simulation Models
Risk simulation models are usually built to forecast uncertain outcomes and
then to select the most attractive or most-likely range of feasible outcome
scenarios from those calculated to inform the decision-making. Forecasting
is notoriously difficult and has been compared to driving a car blindfold while
taking directions from someone looking out of the rear window17. Risk
simulation models aid the process by deriving time and cost forecasts from
simulation trials that provide insight to project risks by quantifying on a
statistically probable basis the chances of the project being completed
within budget targets.

In the models presented in this article Monte Carlo simulations are applied
to project (CPM or PERT) networks and critical path analysis18 to output
results from a large number of trials. The output is then analysed
statistically to predict the most likely duration, completion date and cost for
any project activity and the probability of specific targets being achieved.
The techniques proposed recognise advantages in tailoring outputs from
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simulation models to suit specific projects rather than constraining projects
into generic project software. These advantages include being able to focus
on specific dependencies between activities, costs and time and being able to
select for analysis intermediate parameters derived during the simulation
(e.g. fluctuating critical paths and floats of key activities) that can reveal
specific uncertainties (i.e. risks or opportunities).

Integrating Deterministic and Probabilistic Techniques
Hypothetical projects illustrate the advantages and pitfalls of a
probabilistic, project cost-time simulation technique. The techniques
integrate deterministic and probabilistic models and run them in sequence
and in parallel. Indeed the results of the two complement each other and
together they are worth more than either considered in isolation. In this
way the same standards of cost-time-resource analysis, network logic,
critical path definition, Gantt charts and precedence diagrams are applied
prior to applying the simulation analysis. Moreover, the deterministic
analytical processes form an integral part of project cost-time simulation
and provide sensitivity checks on the output.

Treating a project as a network of activities is crucial to all deterministic
and probabilistic techniques as a project is more than just the sum of its
individual activities. The length of time taken for one activity may or may
not be critical to the project completion time or cost. Some of the crucial
questions that the proposed risk simulation techniques set out to answer are:
 What are the risks associated with achieving specific cost and time

targets?
 What impact do changes in cost or time of an activity have on the whole

project?
 When can the project as a whole be completed?
 Can it be delivered on time and within budget?
If the output is analysed appropriately simulation enhances the quality of
answers that can be provided to these questions from deterministic methods
used in isolation and therefore improve risk management.

Cost-time Project Simulation Techniques

Following completion of network time analysis, probabilistic methods allocate
duration and cost estimates to each activity. The estimates are selected at
random for each simulation trial (based on a random number generator) from
probability distributions defined for each activity. As iterations (trials) of
the simulation are repeated, chance decides the values of the input variables
(within the limits of the distributions) that are selected. Different total
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project durations and total project costs will almost certainly result from
each trial. Computer processing speed is now so rapid that time and cost
analysis of a project network can be repeated and recorded many hundreds
of times very rapidly.
The technique involves equations formulated to combine logic relationships
and sequences (e.g. project networks) with numerical values of input
variables (e.g. activity times and costs) evaluated in repeated trials. Input
variables are treated either as single number (deterministic) estimates or
probability distributions where uncertainty is involved. These variables may
behave independently of each other or be related by complex dependencies.
Project network and precedence diagrams reveal some dependencies between
activities, but others are often more subtle and require careful
consideration in defining the calculation algorithms.

Forward and backward passesthrough the project activity network with
deterministic data (e.g. the most likely activity duration times) will establish
a critical path or a critical chain of activities19. This is essential if the total
project duration is to be computed as a key out put parameter, in addition to
the sum of all the component activity durations. However, as different times
are sampled for each activity in each simulation trial the critical path may
change from trial to trial. Simulation algorithms must account for this by
performing a forward and backward pass for each trial.

Defining Cost & Time Distributions for Project Network Activities
It is necessary to consider every project network activity and decide how
much confidence can be placed on its time and cost estimate. Basic
probability distributions are frequently extrapolated from a three-point
initial estimate. For example: a low-side estimate (P10 or ten percent chance
of being less than), central tendency estimate (mode or P50/median), and a
high-side estimate (P90 or ninety percent chance of being less than). Input
estimates are then transformed into probability distributions of a specific
mathematical type (e.g. triangular, beta20, normal, lognormal or uniform) for
sampling by the simulation21. These transformations are achieved rapidly by
spreadsheet macros. It is critical that defined input distribution limits
cover the possible range for these uncertain variables. A common failure is
to define variables with too narrow a range and for subsequent events (e.g.
supplier delays) to breach these limits. The credibility of the results
emanating from any simulation depends on the quality of the input data.
Where critical knowledge is lacking for estimating the initial value ranges
then more complex distributions and mathematics may be required (e.g.
trapezoidal distributions and fuzzy mathematics22).
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How the simulation model mathematically defines and samples individual
activity variables as probability distributions (e.g. triangular, lognormal, beta,
etc.) can lead to significant variations in the cost-time outputs calculated for
the project as a whole. Deciding on which distribution type a variable should
conform to can be difficult and will to some extent depend upon the risk
ranking and assessment methodology adopted23. Many fundamental
attributes are normally distributed (e.g. equipment life), but derived
attributes that result from the multiplication of constituent attributes (e.g.
cost of items with multiple components) tend to be lognormally distributed.
Triangular and Beta distributions approximate a range of distribution types,
including those that are negatively or positively skewed, with the Beta
distributions giving more weight to the central tendency estimate.

Figure 1: Multi-input distribution diagram

Component costs in a volatile market are often best described by a uniform
distribution with a wide range where no one value has a greater probability
of occurrence than another within the defined range. Many types of cost in
more stable market settings are realistically defined by normal or lognormal
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distributions with large or small standard deviations depending upon the
uncertainties.

In addition to mathematically defined distributions specific activity variable
distributions may be defined by real historical data. These empirically
defined distributions may or may not be similar to the mathematical
distributions. Of course historical performance of similar activities in
recently completed projects is no guarantee that such activities can be
performed to such specifications in the future. Planners should therefore
view historical data critically and consider extending the upper and lower
limits of distributions to recognise other outcomes that could possibly occur
in the future. In many cases activity cost distributions are constrained by
commercial contractual terms. Some examples are fixed price contracts,
gain-share and profit share alliance contracts24, where contractors assume
significant risks of cost and time over-runs in exchange for a share in any
cost savings made relative to a target budget. Simulation algorithms must
appropriately sample contractually defined and historically derived
distributions. It is a useful check to study the values of specific activity
variables sampled by the simulation trials to check for credibility.

Provisional Assessment of Simulation Output

Comparing simulation output frequency distributions for total project cost
and time with the most likely deterministic calculations is a useful credibility
check that the simulation is functioning correctly. The shape of the output
variable frequency distributions can reveal whether they are well enough
defined for meaningful statistical analysis. Calculating a standard deviation
of a key output metric as the simulation trials build up helps to identify when
statistical stability is reached and the number of trials that must be
exceeded to achieve this. It is prudent to run the simulation for several
hundred trials beyond initial stability.

Impact of Defining Activity Variable Distributions in Different Ways

A relatively simple 12-activity project with two parallel paths evaluates the
impact of invoking different mathematical distribution options to define the
individual project activity cost-time variable distributions for sampling by
the simulation trials. Three-point input estimates for each of three activity
attributes (duration, fixed cost and variable cost rate) were systematically
sampled in different simulations by four different mathematical
distributions (i.e., triangular, uniform, normal and lognormal) in various
combinations and with various dependencies.
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The deterministic calculation for the example indicates most likely total
project duration of 45 days (sum of all activity durations of 65 days) and a
total project cost of £650,000. The simulation results for full project
duration are illustrated in Figure 2 as cumulative probability distributions.

Figure 2: Cumulative probability distributions are the most common
method used to statistically display and compare distribution ranges.

Uniform sampling in contrast to triangular, normal or lognormal sampling
maximises the degree of uncertainty applied to the input data. Input
sampling mechanisms can lead to simulation calculated project duration and
cost varying by as much as 10%. Variations of such magnitude could influence
project decisions.

Dealing with Dependencies among Project Activity Variables

Project network diagrams establish dependencies between activities that
influence the calculation of the full project duration time where there is
more than one path of parallel activities. In addition to sequence
dependencies among activities there are often other dependencies between
time and cost that may vary from activity to activity within a specific
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project. Figure 3 illustrates graphically the nature of some such
dependencies.

Figure 3: Cost – time attributes of project activities can be totally
independent, but frequently exhibit dependencies that can range from
curvilinear correlations to complex, contract-driven discontinuous steps.

Correlations between variables define positive or negative, linear or non-
linear, progressive or discontinuous (e.g. step-like) dependencies. Each
activity should be assessed to establish whether dependency exists between
its cost and time attributes. If dependencies are ignored then a simulation
is free to select a sample independently from each cost and time
distribution. The selected cost-time combination may then be unrealistic for
that activity. In dependent cases one random number is used to select an
activity time and the same random number is used to either select a cost
value from a dependency relationship or the cost distribution.

Dependencies can sometimes be subtle and /or complex. It then helps to
establish the cause of each dependency and to evaluate how it might
influence a specific activity. One complexity is that the cost of a single
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project activity can be made up of several independent and dependent costs.
Dividing activity costs into "fixed cost" and "variable cost rate" components
simplifies cost - time relationships in the models presented here. Fixed
costs by nature are those that involve single payments regardless of how
long an activity takes to complete. The term "semi-fixed" is often more
appropriate as many so called “fixed” costs have time-related penalty or
reduction factors associated with them. The distribution ranges of semi-
fixed costs due to uncertainties in their estimates can differ from cost
values determined by time related dependencies.

Variable costs are clearly time dependent (e.g. day rate contracts). For easy
manipulation in a cost-time simulation variable costs can be expressed as
rates (e.g. cost/day). Overheads usually involve both fixed and variable
components despite the over simplification made in many projects of
allocating overheads as a fixed percentage25. Having defined cost
distributions in the model, total cost for an activity is then calculated in
each trial as: semi-fixed cost plus variable cost rate multiplied by activity
duration.

Time dependencies of the two components of each activity cost are defined
separately. It is possible to have a positive dependency between fixed cost
and activity time and a negative dependency between variable cost rate and
activity time. Contrasting dependencies are not unreasonable. For instance,
variable cost rates may have to be higher to finish an activity in a shorter
time (more manpower or equipment needed) and fixed costs may end up lower
due to lower material & support costs.

Cost-time dependencies are often contractually driven and can be complex
(Figure 3), such as step relationships determined by contract penalty, bonus
or gain-share clauses. Simulation cost-time algorithms need to take such
relationships into account if they have material impact on the total cost of
an activity and / or the full project. It is generally not realistic in cost-time
simulations to assume that activity cost and time distributions are
independent and can be simply sampled by unrelated random numbers.

Impact of Applying Different Cost-time Dependencies

The 12-activity project with two parallel paths evaluates the impact of
different time-cost dependencies. Figure 4 shows full project time and cost
cumulative probability distributions calculated by five simulation runs, using
the same input data and triangular distribution sampling with different linear
cost-time dependencies.
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Figure 4: Project cost and duration relationships resulting from a
range of linear cost-time dependencies. Distribution symbols are: TTP
refers to positive dependencies; TTN refers to negative dependencies;
TTPN refers to positive time-fixed cost and negative time-variable cost
rate dependencies; TTNP refers to negative time-fixed cost and positive
time-variable cost rate dependencies.

The simulation with no cost-time dependencies (TT) calculates full project
cost distributions that bisect those for simulations with linear positive (TTP)
and negative (TTN) cost-time dependencies. The positive and negative
dependencies calculate cost distributions with a wider and narrower range of
values, respectively. The means of the five calculated full cost distributions
show more than 6% variation (TTPN the highest; TTN the lowest).
Distributions TTP and TTPN have the largest standard deviations signifying
more uncertainty than the other distributions.
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Calculated Project Cost - Time Displays

The relationship between total project duration and full project cost is the
primary objective of a cost-time simulation. Figure 5 plots calculated cost
versus time for the 12-activity project example used above. It includes
simulation trial points and distribution statistics to define an envelope of
possible outcomes and provide a useful visual display of range and
uncertainty.

Figure 5: Full project cost and duration data displayed as individual
simulation trial results and statistically in terms of percentiles and
arithmetic mean of the full distributions of calculated data.

Risk, Opportunity & Performance with Respect to Specified Targets

Cost-time simulations have the valuable ability of quantifying uncertainty and
risk. Uncertainty in a symmetrical distribution is quantified by the standard
deviation. Standard deviations become less meaningful for skewed
distributions (e.g. costs for some projects). Measuring, monitoring and
mitigating risks (i.e. negative or downside uncertainties) is often more
critical in cost-time simulation than quantifying opportunities (i.e. positive or
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upside uncertainties). Measuring project performance against cost and time
targets (e.g. budgets or contract specifications) and quantifying the risks of
exceeding those targets is a key project management task aided by cost-
time simulation

Semi-standard Deviation as a Measure of Risk

A simple way to quantify risk is to record the percentage of simulation trials
that exceed a specified target. However, a percentage says little about the
magnitude by which that target might be exceeded. A semi-standard
deviation (SSD)26, measuring the mean squared deviation of a distribution
occurring above a target value, measures the magnitude of risk associated
with exceeding that target value and is calculated in the same units as the
distribution itself.

Figure 6: Semi-standard deviation (SSD) measures the mean squared
deviation of distribution values that fall above specified targets for
project duration and cost. It is a useful way of quantifying levels of
risk associated with cost or duration aspects of a project.

Figure 6 plots SSD for project cost (relative to a target cost of £600,000)
versus project duration (relative to a target project duration of 50 days) for
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the 12-activity project example. Simulation cases for triangular and
lognormal sampling of the same input data with a range of cost-time
dependencies are represented in this graph. In terms of SSD the lognormal
sampling of input distributions results in a 50% higher risk of project
duration exceeding the target than for the triangular input distributions.
This is consistent with lognormal distributions being positively skewed and
the project duration calculation being based on addition of component
activity durations along the critical path.

In contrast the project cost SSD risks in Figure 6 are comparable for the
two distribution types where no cost-time dependencies exist. The higher
SSD risk for the positive time-cost dependencies (i.e. TTP and LLP) and
lower risks for the negative time-cost dependencies (i.e. TTN and LLN) are
consistent with the differences in Figure 4. It is also worth noting that the
SSD cost difference between cases TTN and TTP is less than the
difference between cases LLN and LLP, which is consistent with the
different nature of the input distributions.

Evaluating SSD for a range of potential project cost and duration targets
can a useful process in actual setting meaningful and achievable project
budget targets. Such SSD relationships can help a project manager to focus
on meaningful targets and to monitor them on an ongoing basis throughout
the life of the project. SSD values can suggest realistic safety time buffers
to be incorporated as contingencies into the final project schedule and to
quantify the risks of exceeding such targets.

In practice it is unlikely that actual events during the implementation of any
project will follow exactly the forecasts made by the risk simulation models.
However, attempts to quantify the range of possible outcomes and risks
associated with them is a significant advance on the deterministic
alternative of evaluating a most likely case and running high and low
sensitivity cases for which no probabilities of occurrence are established.
On the other hand deterministic sensitivity cases can complement, and serve
as a check on, the ranges of the probability distributions output by the risk
simulations.

Cost-time simulation assigns probabilities of occurrence to possible project
outcomes and quantifies the risks of exceeding specific budget targets.
Using cost-time simulation in planning and ongoing monitoring of projects
leads to more consistent decisions and better awareness of the magnitude of
the risks involved.
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Defining & Using Project Logic to Evaluate Simulation Trials
- A Hypothetical Project Simulation Case Study

A hypothetical project to plan, build and commission a manufacturing factory
with three separate product processes is analysed as an example. It
consists of 20 activities networked with 5 parallel paths. The example
illustrates a cost-time simulation with relatively complex interactions
performed using spreadsheets. The project used for the example could
alternatively have involved corporate or non-construction themes, e.g.
introducing a change initiative or developing a new IT system, which are also
best planned and implemented using project techniques27. The cost-time
simulation techniques developed here are generic to projects undertaken in a
wide range of industrial and corporate environments.

Table 1: Three-point input data for hypothetical project to plan,
construct and commission a manufacturing factory to define symmetrical
input case. Input distributions are defined for 3 variables: time, fixed
cost, and variable cost rate, associated with each of the twenty
component activities. The model assumes no cost-time dependencies.

Table 1 lists the 20 project activities and the their three-point estimates
for activity duration, fixed cost and variable cost rate that form the input
for the cost-time simulation. Duration times are in days and the costs are
quoted in thousands of pounds. The input data define symmetrical
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distributions. In addition to the input distributions another prerequisite for
the simulation is the project network logic, i.e. which activities must be
completed before others may begin and which activities can be performed at
the same time on parallel paths. Each simulation trial then performs forward
and backward passes and establishes critical paths. This logic can be listed
and input into the model in the form of a simple table such as that shown in
Table 2. It is not essential for the simulation algorithms that activities
converging into subsequent activities have to be numbered sequentially.
However, it can help the analyst of tabulated data if, where possible, there
is a systematic scheme to the activity numbering system and labels are used
to distinguish parallel paths.

Table 2: Network logic for hypothetical manufacturing factory
project. The inter-dependencies among project activities in essential
input to the simulation model in order to enable it to accurately calculate
full project duration where there is more than one path of activities.

It is a visual asset to establish the project network logic diagrammatically,
but this is not essential for the simulation process. Precedence network
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diagrams are easy to construct in spreadsheet workbooks and ideal to link
into the deterministic and simulation calculations for project duration to
ensure that the network logic is correctly configured. The more parallel
paths that exist the more important the network diagrams become in
verifying the logic. A precedence diagram for the hypothetical
manufacturing factory project is illustrated in Figure 7.
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Figure 7:Activity network for hypothetical manufacturing factory project expressed in precedence diagram format. This
diagram represents the most likely deterministic case (Table 1) with the critical path of activities linked by red arrows. The
simulation model can be linked to this diagram to enable the results of iterations of the model to be displayed and analysed.
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It is useful to have two copies of the precedence diagram – one linked to the
deterministic model (to check the network logic) and the other linked to the
simulation model. When evaluating the simulation one trial at a time for a
few trials (to verify the network logic) the linked precedence diagram can be
reviewed after each trial to check the values selected from the activity
distributions. This provides insight into how critical paths may fluctuate
with varying input values. It also provides a further check that the
simulation model is sampling the input distributions and combining the
selected values with the network logic and other dependencies in the manner
intended.

Table 2 and Figure 7 show that although the project has relatively few
component activities the logic is complex, with five parallel paths and several
converging and diverging paths. The critical path into activity numbers 17
and 18, for example, each depend upon 3 converging activities. The critical
paths leading forward from activity numbers 9 and 10 both depend upon 3
diverging pathways.

In addition to the symmetrical input case a skewed case formed input for a second
simulation of the project to illustrate the modelling power of the technique. The
skewed case involves the same P10 and P50 values as the symmetrical case (Table
3) but higher P90 values for the three variables. The two simulations used
triangular sample distributions and no time-cost dependencies.

Table 3 Input data for skewed high (P90) case distributions
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Summary results are illustrated in Figures 8, 9 and 10. Not surprisingly the
skewed case distribution shows a much greater range and higher statistical
mean of 979 days than the symmetrical case distribution with mean project
duration of 831 days. The flatter cumulative probability curve for the
skewed case is a qualitative indication of the higher levels of uncertainty
associated with that case.

Figure 8: Cumulative probability distributions for calculated project
duration from simulations run using the symmetrical and skewed input
data for the hypothetical manufacturing factory project.

Project cost versus project duration relationships reveal the greater spread
of data points for the skewed input case. P10 to P90 percentiles plus mean
(Figure 9) clearly define and distinguish the two simulation cases.
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Figures 9a & 9b: Calculated project cost and duration data displayed as
individual simulation trial results (Figure 9a) and statistically in terms of
percentiles and arithmetic means (figure 9b) of the full distributions of
calculated data from the symmetrical and skewed input data for the
hypothetical manufacturing factory project.

The semi-standard deviation (SSD) analysis of the calculated simulation
distributions quantifies the higher risk of exceeding a range of specified
project cost targets for the skewed input case (Figure 10). Such risk plots
are also useful for comparing different plans for the same project and for
monitoring ongoing project performance.

The value of cost-time simulation models goes far beyond the calculation of
full project cost and duration. There are a number of intermediate
calculations that are involved in the simulation that are also worthy of
analysis. The statistical means of the duration and cost distributions
associated with specific activities as sampled by the simulation can provide
more detailed insight concerning activities that need further planning and
definition in order to reduce critical path times and costs. If input cost
data is based upon ballpark estimates (e.g. quoted to greater than + or –
25%) it will certainly result in higher risk / greater range sample
distributions than for data based upon definitive estimates (e.g. quoted to
approximately + or – 5%). Detailed analysis of specific activities may
indicate where more precise estimates are critical for project viability and
with which activities most of the risk is associated.
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Figure 10: Semi-standard deviation (SSD) provides a comparable
measure of risk magnitude associated with project costs for the
symmetrical (upper graph) and skewed (lower graph) input cases with
respect to a range of project cost targets for the hypothetical
manufacturing factory project.
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Other relevant intermediate calculations are the critical path fluctuations of
activities feeding into convergent points in the project network from trial to
trial. The critical path is the sequence of dependent events that prevent a
project from being completed in a shorter time interval based upon the
allocated resources. The critical path therefore represents a significant
project constraint that should be fully analysed and tested. Analysis of the
simulation results can help the project manager manipulate or exploit the
critical path constraints to minimise risk associated with the main project
targets. Actions may involve re-allocation of resources to critical activities
or establishing appropriate time buffers28 to protect key project pathways
or groups of activities.

Figure 11: Intermediate calculations for simulation models can be used
to identify through which activity the critical path passes for each trial
of the model. This data can be analysed statistically to identify
dominant critical paths, which can be useful in project management
decisions such as resource allocation issues.

Critical path analysis of simulation results is best focused on key project
activities (e.g. convergent points) with the analysis expressed as
percentages. Figure 11 shows analyses for two convergent points in the
symmetrical and skewed simulation cases of the hypothetical manufacturing
project. The left-hand pie charts indicate that the critical path is much
more likely to pass through activity 3 than activity 6 for both cases. It
makes sense therefore to focus resources on activity 6, which is most likely
to influence the critical path. The right-hand pie charts show that activity
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11 (parallel path B - see Figure 7) forms the critical path in 62% of the
simulation trials for the symmetrical input case. For the skewed input
distributions activities 11 and 12 each represent the critical path converging
into event 17 in about equal measure (i.e. 46% and 44%, respectively).
Activity 13 almost never represents the critical path into activity 17 for the
symmetrical case and does so for only 10% of the iterations for the skewed
case. Clearly effort and resources should be focused on both activities 11
and 12 in terms of ensuring project targets are met. Such information
cannot be obtained from deterministic analyses or many proprietary
simulation models that focus only on the primary project cost duration
calculations.

Another intermediate calculation worthy of further analysis for each
simulation trial is the float associated with key project activities. The
percentage of occurrences where float is greater than zero (i.e. not a
critical path activity) and the average magnitude of the float time for those
non-critical cases can help in resource allocation and planning decisions. This
information can also contribute to decisions establishing the magnitude of
any safety buffers (i.e., contingency time) that may be required for specific
project paths.

Conclusions
 Risk simulation techniques complement the deterministic techniques of

network and critical path analysis enabling rigorous models of project
plans to be constructed, risks quantified and targets tested with
sensitivities prior to the plan being rolled out.

 The choice of probability distribution functions selected to sample
project activity input ranges and cost-time dependencies for each
activity require careful consideration when building risk simulation models
for projects. Input distribution and dependency definition can each
account for variations in simulation results of up to about 10% of the
calculated mean values from the same three-point estimates for the
individual project activity cost-time variables.

 The risk simulation techniques proposed have primary objectives to
forecast and display statistical analysis of the full project time and cost
relationships. However, they also aim, as a secondary objective, to focus
on the contributions of specific project activities and critical paths to
provide detailed insight to interactions that might occur within the
project network.

 Semi-standard deviation is a key statistical measurement applied to
calculated cost-time variable distributions output by the proposed risk
simulation techniques. This statistic quantifies the risk of exceeding
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project cost and time targets. It focuses on risk rather than uncertainty
and is expressed in the same units as the distribution being analysed.

 Workbook spreadsheets and their built-in statistical functions
manipulated by user defined Visual Basic (VBA) macros provide a flexible
software tool for building and evaluating risk simulation models
customised to specific small to medium sized projects. The wide
availability of such software at desktop PC level should ultimately
encourage more practicing project managers to adopt spreadsheet based
risk simulation techniques such as those described here.

This report expands upon work published by David Wood in the Oil & Gas
Journal and Risk Management: An International Journal in 2001

Intellectual property rights belong to David Wood. Please do not copy
or distribute this material without David Wood’s permission.

David Wood is an international energy consultant
specializing in the integration of technical, economic,
risk and strategic information to aid portfolio
evaluation and management decisions. He holds a PhD
from Imperial College, London. Research and training
concerning a wide range of energy related topics,
including project contracts, economics, gas / LNG /
GTL, portfolio and risk analysis are key parts of his
work. He is based in Lincoln, UK but operates
worldwide. Please visit his web site
www.dwasolutions.com or contact him by e-mail at
dw@dwasolutions.com

David Wood has produced a number of similar detailed reports covering a
range of themes relevant to the oil and gas industry, e.g. project planning
simulation, strategic portfolio modelling, risk and economics analysis, oil and
gas asset valuation.

Notes

1 1 PMBOK Guide (2000) A guide to the project management body of
knowledge. Project Management Institute (Pennsylvania, USA). See website
www.pmi.org/publictn/pmboktoc.htm. Chapter 11 covers project risk
management and covers probability and simulation; Chong, Y.Y. and Brown,
E.M. (1999) Managing Project Risk – Business Risk Management. Financial



8

Times – Prentice Hall. See chapter 11 (risk management – a hard choice for a
soft science) for overview of risk modelling and simulation; Meredith, J.R.
and Mantel, S.J. jr. (1999) Project management – a managerial approach (4th

edition). John Wiley & Sons. Describes project selection models and risk
analysis under high uncertainty and advocates simulation techniques combined
with sensitivity analysis; Kerzner, H. (2001) Project management – a systems
approach to planning scheduling and controlling. John Wiley & Sons.

2 2 Casti, J.L. (1997). Would-be worlds: how simulation is changing the
frontiers of science. John Wiley & Sons; Wood, D.A. (2001) A systematic
approach integrating risk and strategy management to optimize portfolios of
industrial assets, Risk Management: An International Journal. Vol. 3, No. 3,
pp 7–21.

3 3 Hillier, F. (1963) The derivation of probabilistic information for the
evaluation of risk investments. Management Science. Vol. 9 (April), pp.44-
57; Hertz, D.B. (1964) Risk analysis in capital investment, Harvard Business
Review. Vol. 42, No.1, (January-February), pp. 169 – 181.

4 4 Smith, M.B. (1968) Estimate reserves by using computer simulation method,
Oil & Gas Journal. March 11, pp. 81-84; Hackling, I. (1975) The emergence
of probability. Cambridge University Press; Whitmore, G.A. and Findlay,
M.C. (1978) Stochastic dominance. An approach to decision making under
risk. D.C. Heath, Lexington, Massachusetts.

5 5 Wood, D.A. (1999) Integrated approach to property evaluation improves
decision-making for both parties, Oil & Gas Journal. Nov 1, pp. 49-53.

6 6 Klingel, A.R. jr. (1966) Bias in PERT project completion time calculations
for a real network. Management Science. Vol.13, No.4 (Dec.) pp. 194 –201;
Schonberger, R.J. (1981) Why projects are always late. A rationale based on
manual simulation of PERT /CPM networks. Interfaces. Vol. 11, No. 5 (Oct)
pp. 66-70; Hertz, D.B. & Thomas, H. (1983) Decision and risk analysis in new
product and facilities planning problem. Sloan Management Review, pp. 17-
31.

7 7Meredith, J.R. and Mantel, S.J. jr., op.cit; Locke, D. (2000) Project
Management (seventh edition). Gower.

8 8 Chapman, C. (1997) Project risk management- processes, techniques and
insights. Wiley; Chapman, C. and Ward, S. (2000) Estimation and evaluation
of uncertainty: a minimalist first pass approach. International Journal of
Project Management. Vol.18, No. 6, pp.369-383; Spender, S. (2001)
Managing incomplete knowledge: why risk management is not sufficient.
International Journal of Project Management. Vol.19, No. 2, pp.79-87;



9

Pontrandolfo, P. (2000) Project duration in stochastic networks by the PERT –
Path technique. International Journal of Project Management. Vol. 18,
No.3, pp.215-222.

9 9 Mohammed, S. and McCowan, A.K. (2001) Project investment decisions
under uncertainty using possibility theory. International Journal of Project
Management. Vol. 19, No. 4, pp.231-241.

10 10 McMillan, J. (1992) Games, strategy and managers. Oxford University
Press.

11 11 Kuchta, D. (2001) Use of fuzzy numbers in project risk (criticality)
assessment. International Journal of Project Management. Vol.19, No. 5,
pp.305-310.

12 12 Elkjaer, M. (2000) Stochastic budget simulation. International Journal of
Project Management. Vol.18, No. 2, pp.139-145.

13 13 PMBOK Guide, op.cit.

14 14 Raz, T. and Michael, E. (2001) Use and benefits of tools for project risk
management. International Journal of Project Management. Vol.19, No. 1,
pp.9-17.

15 15 Uher, T.E. and Toakley A.R. (1999) Risk management in the conceptual
phase of a project. International Journal of Project Management. Vol.17,
No. 3, pp.161-169; Carter, E.E. (1972) What are the risks of risk analysis.
Harvard Business Review. Vol. 50, No. 4, pp.72-82. Study of the problems
associated with the adoption of probabilistic risk analysis techniques in 4
major oil companies.

16 16 Tummala, V.M.R. and Burchett, J.F. (1999) Applying a risk management
process (RMP) to manage cost risk for an extra high voltage transmission line
project. International Journal of Project Management. Vol.17, No. 4,
pp.223-225. An example of a real world project simulation using Excel
spreadsheets with the @Risk add-in software; Merna, T. and Von Storch, D.
(2000) Risk management of an agricultural investment in a developing country
using the CASPAR programme. . International Journal of Project
Management. Vol. 18, No. 5, pp.349-360. An example of a real world project
simulation using the CASPAR (computer aided simulation for project
appraisal) software to integrate simulation and sensitivity analysis.



10

17 17 Meredith, J.R. and Mantel, S.J. jr., op.cit.

18 18 Moder, J.J., Phillips, C.R. and Davis, E.W. (1983) Project management
with CPM, PERT and precedence diagramming. Van Nostrand Reinhold,
New York; Lockyer, K. and Gordon, J. (1996) Project management and
project network techniques. Pitman Publishing; Locke, D., op.cit.

19 19 Buttrick, R. (2000) The interactive project workout (second edition).
Financial Times – Prentice Hall.

20 20 PMBOK Guide, op.cit.

21 21 Murtha, J. and Janusz, G. (1995) Spreadsheets generate reservoir
uncertainty distributions, Oil & Gas Journal. March 13, pp. 87-91

22 22 Mohammed, S. and McCowan, A.K., op. cit; Kuchta, D., op.cit.

23 23 Baccarini, D. and Archer, R. (2001) Risk ranking of projects: a
methodology International Journal of Project Management. Vol. 19, No. 3,
pp.139-135; Burke, R. (1999) Project management: planning & control
techniques (3rd edition). Wiley. Chapter 18 addresses risk quantification
methods.

24 24 Halman, J. and Braks, B. (1999) Project alliancing in the offshore industry.
International Journal of Project Management. Vol.17, No. 2, pp.71-76.

25 25 Watson, M. (1999) The ten percent syndrome. Project Manager Today.
Vol. 11, No.5, p.8.

26 26 Wood, D.A., op.cit. (endnote 3).

27 27 Buttrick, R., op. cit.

28 28 Buttrick, R., op. cit.


