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a b s t r a c t

Optimizing wellbore trajectories to reach an offset subsurface location, involving a complex combination
of vertical, deviated and horizontal well components, requires the minimization of both wellbore length
and frictional torque on the drill string. This is particularly the case for shallow horizontal wells which
are often limited in their extent by torque. By minimizing both wellbore length and torque it is likely that
a wellbore designed to reach a specific target can be drilled more quickly and cheaply than other po-
tential trajectories. However, these two objectives are often in conflict with each other and related in a
highly non-linear manner. A multi-objective genetic algorithm (MOGA) methodology is developed and
applied with two objective functions, viz. wellbore length and torque, to develop a set of Pareto optimal
solutions that can aid the selection of less risky/less costly well trajectory designs. The MOGA perfor-
mance is compared with single-objective function studies of a specific wellbore scenario. The results
indicate that the MOGA methodology outperforms single-objective function approaches leading to rapid
convergence towards a set of Pareto optimal solutions. Analysis reveals that by adopting an adaptive
approach that allows the behavioral parameters of the genetic algorithm (GA) to evolve as iterations
progress, the MOGA proposed converges more rapidly toward better ultimate solutions than if the GA
behavioral parameters are held constant over all iterations of the algorithm. Algorithm code listings for
the MOGA and GA applied in the analysis presented are included as appendices.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

One of the most expensive operations involved in the explora-
tion and development of oil and gas reservoirs is typically the
drilling of the wellbores. In the prevailing market conditions of
relatively high costs and low oil and gas prices across much of the
worldmost oil and gas companies are particularly keen tominimize
their drilling costs Khaled et al., 1999.

Previous studies indicate that the cost of drilling a horizontal
well is about 1.4 times the cost of drilling a vertical well (S. D. Joshi,
2003). The attraction of drilling horizontal and directional wells is
that they can contact a greater volume of the reservoir and can
transect the highest quality zones more effectively than vertical
wells, resulting in higher production and recovery rates. In both
cases one of the most important factors affecting the cost of drilling
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is length of the wellbore and the time taken to drill to the reservoir
target. Thus any possibility to reduce the length of the wellbore,
within the constraints of acceptable curvatures and geological ob-
stacles, typically reduces the time it takes to reach the target and
thereby reduces the total drilling costs. Optimizing wellbore
lengths, subject to a defined set of constraints, typically is desirable
as a means of improving the economics of drilling operations.

In the recent years, optimization has been used extensively
across the petroleum industry for a variety of purposes, process
plant optimization, transport scheduling and to various aspects of
the drilling operation (e.g. Shokir et al., 2004; Atashnezhad et al.,
2014; Guria et al., 2014). With respect to wellbore trajectory plan-
ning Shokir et al. (2004) used a genetic algorithm and Atashnezhad
et al. (2014) used a particle swarm optimization algorithmwith the
single objective function of minimizing wellbore length, subject to
a number of defined constraints. A recent application of multi-
objective genetic algorithm (MOGA) to drilling is provided by
Guria et al. (2014) in their application of a multi-objective optimi-
zation genetic algorithm to two- and three-objective functions
related to determining optimum drilling variables related to an oil
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Fig. 1. Calculation of the length for a deviated section of the well trajectory after Atash-
nezhadetal. (2014)describes the termsusedtodefinethedifferentanglesandcomponents
of the wellbore trajectory. MD¼ measured depth; TVD¼ true vertical depth.
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field offshore Louisiana. That work applied an elitist non-
dominated sorting genetic algorithm to (i) maximize drilling
depth, (ii) minimize drilling time and (iii) minimize drilling cost
with fractional drill bit tooth wear as a constraint. Another appli-
cation of MOGA, relevant to petroleum field operations, is proposed
by Yasari et al. (2013) to apply a non-dominated sorting genetic
algorithm to find optimized and robust water injection policies for
three injection wells.

In this paper a new MOGA optimization model for well trajec-
tory planning is developed for optimizing drilling operations. The
model optimizes the recommended well path by taking into ac-
count two-objective functions: 1) to minimize wellbore length and
trajectory to a specified sub-surface target location (i.e. length); and
2) to minimize torque on the drill string during the drilling oper-
ation (i.e., torque).

We recognise that when designing wells at specific locations
there are other factors that need to be taken into account in addition
to wellbore length and torque (e.g., wellbore tortuosity and its in-
fluence on the ease or difficulty in running a specific well completion
design; combined drilling and completion costs associated with
drilling a particular well path; dealing with problem formations
above a reservoir in a certain way, i.e., setting casing above it or
below it certain specified points; entering the reservoir at a certain
angle and penetrating it at a certain inclination). Some of these
additional factors can be dealt with as constraints that selected op-
timum well paths need to achieve. It would also be possible to
consider these as optimization objectives in their own right in the
MOGA algorithm. In this study we focus on just the two key objec-
tives, i.e., wellbore length and torque, to prove the benefits of the
MOGA concept. Wewill be conducting future research to expand the
MOGA methodology to consider some of these additional factors,
both as constraints and additional objectives.

MOGA involves a process of developing a random set of po-
tential solutions making up a population of solutions to be tested
for fitness. Each individual solution generated is typically referred
to as an individual or gene. The population is subjected to a series of
evolutionary iterations (i.e., developing new solutions/genes by
genetic processes such as mutation and crossover with different
characteristics in each generations), with the solutions being tested
for fitness and ranked in each generation, and the most fit for
purpose being carried forward to the next generation. This process
means that each generation progresses, or converges, towards the
best set of solutions. Finally, the best solutions are identified and
their performances compared in relation to the multiple objective
functions. In this study the MOGA is coded using MATLAB software,
with the detailed code provided in Appendix A. The model is
applied to the horizontal well drilling trajectory scenario (based on
a real well drilled in Egypt) studied for trajectory optimization
purposes by Shokir et al. (2004), using a single-objective function
genetic algorithm, and Atashnezhad et al. (2014) using particle
swarm optimization. We describe how our MOGA model works in
detail and provide an analysis of the results for the specific, com-
plex, wellbore trajectory selected.

The case study is based on a real well drilled in Egypt, and
previously used to demonstrate wellbore trajectory optimization
using a genetic algorithm by Shokir et al. (2004) applied to the
deviated well trajectory calculation algorithm originally proposed
by Adams and Charrier (1985), using the length of the wellbore
between specified surface and bottom-hole locations as the
objective function.

2. Mathematical formulation

With the dual objectives of finding optimal solutions that pro-
vide the minimum well length, honoring the wellbore constraints
imposed, so that the torque on the drill string is alsominimized, it is
necessary to provide mathematical formulations for those two
clear objective functions, i.e.: 1) the wellbore length; 2) the torque
on drill string while rotating. These two objective functions are
described in mathematical formulations in the following sections.
2.1. Well path length

Fig. 1 illustrates all the components involved in the calculation
of the length of each curved section of a directional wellbore. There
are several methods available to measure the wellbore length of a
directional well. Our formulation uses the radius of curvature
method. In the radius of curvature method, constant curvature
between two points and the radius of the curvature is given by
equations (1)e(3):

a ¼ 1
Dm
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Based upon the wellbore trajectory illustrated in Fig. 2, with
multiple curved and linear components, the total measured depth
of the wellbore can be obtained from equation (4):

TMD ¼ DKOP þ D1 þ D2 þ D3 þ D4 þ D5 þ HD (4)

Detailed formulas to calculate the non-vertical and horizontal
components of the wellbore trajectory (D1, D2, … D5) are provided
in Appendix A.
2.2. Torque

Torque and drag analysis in relation to wellbore tubulars has
been studied in detail and is now well understood (e.g., Sheppard



Fig. 2. The vertical plane of a horizontal well with the operational parameters from Atashnezhad et al. (2014) developed from the wellbore scenario studied originally by Shokir
et al. (2004). Note that the scenario involves more than one build section and a drop-off section separating the build sections. The wellbore trajectory formulation incorporates all
the sections identified in this diagram.

Fig. 3. Force balance for pipe pulling along a straight surface (From Aadnøy and
Andersen, 2001).
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et al., 1987; Xie et al., 2012; Aadnøy et al., 2010). The objective is to
prevent drilling and completion problems before they occur (Xie
et al., 2012), and this is particularly necessary in wellbores with
curved and non-vertical sections as drag and torque loss are asso-
ciated with directional wells. Drag is experienced when the drill
string is moved up or down the wellbore, for example when trip-
ping in and out of the hole. The sources of drag and torque losses
include: differential sticking, key seating, poor hole cleaning, and
sliding wellbore friction.

Optimal well path design, from the perspective of torque and
drag, should minimize all these effects (Johancsik et al., 1984;
McCormick and Chiu, 2011), such that:

✓ Normal forces acting on the drill string are reduced
✓ Dynamic conditions are enhanced (static conditions minimized)

To calculate the torque on a drill string the soft string model is
used as the formulation for the torque objective function. This as-
sumes that the drill string takes the form of a heavy cable lying in
the wellbore, and any tubular stiffness effects due to the drill pipes
is ignored. Calculations consider only the state in which the drill
string is rotating, without any axial movement up or down. For-
mulas are provided for two general cases: equation (5) for a straight
section; and, equation (6) for a curved section.

F2 ¼ F1 þ BwDL cos 4 (5)

T ¼ mrwDL sin 4 (6)

In a straight section the tension along the drill pipe has no effect
on the normal pipe force, and hence, no effect on friction. Straight
sections are weight dominated, as only the normal weight compo-
nent generates friction. Fig. 3 shows the force balance for a straight
pipe. Equation (5) calculates the change in axial load, and equation
(6) calculates the torque, on a straight section of drill pipe. Fig. 4.

For the curved sections, the normal contact force between string
and hole depends strongly on the axial loading within the pipe.
So, for the calculation of the torque, the tension in the pipe is
required. Other parameters that contribute to this calculation are
those angles determining the total change in direction. These an-
gles and forces are illustrated and defined in Figs. 5 and 6. They are
derived via the relationships expressed by equations (7) and (8):
e1$e2 ¼ je1jje2jcos b ¼ cos b (7)

cos b ¼ sin 41 sin 42 cosðq1 � q2Þ þ cos q1 cos q2 (8)

The angle b is the total directional change. If both inclination and
azimuth are changed, the plane that b acts in is not constrained to
the horizontal or vertical plane (Fazaelizadeh, 2013). Having
determined the axial loading in the drill pipe in equation (9) we are
able to calculate the torque, which is expressed by equation (10):

F2 ¼ F1 þ BwDL
�
sin 42 � sin 41

42 � 41

�
(9)

T ¼ mrF1b (10)

Given that the wellbore trajectory in the scenario analyzed
consists of seven parts, the torque must be calculated for each part
separately, and summed to provide the total torque. The value of T



Fig. 4. Axial loading on a straight section (From Aadnøy and Andersen, 2001).

Fig. 5. Total Direction change and unit vectors e1 and e2 at two survey points P1 and P2
(from Fazaelizadeh, 2013).

Fig. 6. Axial loading on a curved section during total change b in direction (from
Fazaelizadeh, 2013).

Table 1
Operational restrictions.

TVD Min. ¼ 10850 ft. Max. ¼ 10900 ft.

HD 2500 ft
Dogleg severity T1, T2,T3,T4,T5 � 5�/100 ft.
Min. value of inclination angles 41 ¼ 10� 42 ¼ 40� 43 ¼ 90
Max. value of inclination angles 41 ¼ 20� 42 ¼ 70� 43 ¼ 95
Min. value of azimuth angles q1 ¼ 270� , q2 ¼ 270� , q3 ¼ 270�

q4 ¼ 330� , q5 ¼ 330� , q6 ¼ 355�

Max. value of azimuth angles q1 ¼ 280� , q2 ¼ 280� , q3 ¼ 280�

q4 ¼ 340� , q5 ¼ 340� , q6 ¼ 360�

Kick-off point depth Min. ¼ 600 ft. Max. ¼ 1000 ft.
Draw down point depth Min. ¼ 6000 ft. Max. ¼ 7000 ft.
Third build point depth Min. ¼ 10000 ft. Max. ¼ 10200 ft.
1st Casing setting depth Min. ¼ 1800 ft. Max. ¼ 2200 ft.
2nd Casing setting depth Min. ¼ 7200 ft. Max. ¼ 8700 ft.
3rd Casing setting depth Min. ¼ 10300 ft. Max. ¼ 11000 ft.
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from the above relation is the second objective function expressed
by equation (11):

T ¼ Tvertical þ T1 þ T2 þ T3 þ T4 þ T5 þ Thorizontal (11)

The calculation of the torque commences from the bottom of the
drill string (i.e., when the drill string is at the wellbore's total depth
(TD) then the T calculation starts at Thorizontal), and continues,
stepwise, upward to the well head (i.e., last component added to
the calculation is Tvertical). For the wellbore scenario evaluated the
torque calculation involves the following assumptions:

1. The drill string has no axial movements (just rotation).
2. The drill string has 0.1 ft radius and 0.3 kN/ft weight.
3. The friction factor is 0.2 and the buoyancy factor is 0.7.

The detailed calculation of torque for the wellbore trajectory
scenario studied is provided at Appendix A.

For the optimization calculation two types of constraints are
applied to the wellbore trajectory and torque calculations: 1)
Operational constraints, e.g., the rate of hole-angle build and rate of
hole-angle drop off, and angle-hold wellbore section 2) Non-
negative (logical) constraints, e.g. the measured depth and true
vertical depth cannot be negative and be accepted as valid solutions
to the wellbore optimization problem. Table 1 describes the opti-
mization operational constraints imposed on the wellbore scenario
evaluated. 1. The case study surveyed in this study has been
extracted from “E. M. Shokir et al., 2004”, so all information and
limitations about it are from that paper. However the provided
algorithm in this article is capable to include any other limitation
such as special range for DLS in a particular formation or any
constraint about the reservoir or other formations.
3. Multi-objective optimization

Multi-objective optimization is now used widely to aid decision
making and selection of alternatives in many industries. Faster
computation speeds, greater computer memory space and more
understanding and accessibility to the algorithms is leading to
expansion of their applications to solve common operational,
financial and planning problems. In many real projects, there are
multiple objectives that are inconsistent with each other, i.e., they
act independently of each other, or in conflict with each other to an
extent, in delivering high performing outcomes for the project.



Fig. 7. Pareto optimal solutions concept for two objective functions, F1 and F2, to be
minimized. The triangles represent non-dominated solutions, i.e. there are no solu-
tions better than these; minimum F2 for a given value of F1 and vice versa. The circles
represent dominated solutions, i.e. there is at least one solution that performs better
than these in terms of minimizing values of F1 in relation to F2. (Modified after Haupt
and Haupt, 2004).
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Each objective function also typically has a number of constraints
applied to it (e.g. Table 1), and this increases the complexity of the
problem. Multi-objective optimization (MOO) requires simulta-
neous optimization of conflicting objective functions that may
compete with each other in preventing the identification of a single
global optimum solution (e.g., Yasari et al., 2010). In such problems,
usually there is not a solution that results in all the objective
functions being brought to optimum states. Rather, it is necessary
for algorithms to search for solutions whereby the multiple ob-
jectives collectively occur in the most optimal state. In practice
there often are multiple solutions that equally satisfy the collective
“most” optimal state for the multiple objective functions evaluated,
i.e., better performance in some objective functions trading off
against poorer performance in other objective functions for a
particular solution. Such multiple-optimum solutions are
commonly referred to as Pareto optimal solutions in MOO (e.g.,
Haupt and Haupt, 2004).

Consider a multi-objective optimization problem with a mini-
mization function, F(x), involving n individual objective functions
(f1 … fn) that is defined as follows:

minFðxÞ ¼ ff1; f2; :::; fng

where, fi(x) ¼ ith objective function of n objective functions to be
minimized

Each objective function is subjected to specific constraint
functions, G(x) and H(x), with values specified:

GðxÞ<0;HðxÞ ¼ 0
x2R

Each individual solution, x, is one of a population of solutions
that achieves the overriding objective of the calculation (e.g. rea-
ches the target location specified for the well bore).

The multi-objective goal is to minimize the individual objective
functions, f1, f2 …, fn simultaneously; recognising that a single so-
lution satisfying all objective functions is unlikely to exist, an al-
gorithm needs to be formulated to reveal the Pareto optimal
solutions. To achieve this, a multi-objective algorithm must
distinguish between “dominated” and “non-dominated” solutions.

If all objective functions are striving to achieve minimum solu-
tions, an acceptable solution j dominates solution i, if and only if, for
any i, fi (x) � fj(x) and at least for one function fi (x) < fj(x). If a so-
lution is not dominated by any other solutions it is called a Pareto
optimal solution or a non-dominated solution. Such a set of Pareto
optimal solutions is called a Pareto optimal set. For any two
objective functions the Pareto set may be displayed graphically as a
Pareto frontier; for multiple objective functions the Pareto set may
be displayed graphically as a Pareto surface. In some problems the
set of Pareto optimal solutions can be very large (possibly infinite,
i.e. all acceptable solutions in the population are non-dominated). A
Pareto frontier for a two-objective optimization (minimizing) is
shown schematically in Fig. 7 that clearly describe the concept of
Pareto front and Pareto optimal solutions. The initial goal of a MOO
is to find the Pareto optimal set; the final objective is to use that
non-dominated set to inform decisions as to which non-dominated
solution(s) in that set should be selected for operational purposes.
4. Genetic algorithm

Genetic algorithms (GA) are stochastic search algorithms based
on the mechanisms of natural selection and applying processes
similar to those observed in biological genetics (e.g. Gen and Cheng,
2008). GA typically commence with an initial set of random solu-
tions, or selected (seeded) solutions, representing a “population” of
solutions that satisfy all constraints to the problem and achieving the
overriding target (e.g. the total depth of the well at the specified
target location) Sivanandam and Deepa, 2008. Each solution in the
population is sometimes referred to as a “chromosome”, maintaining
the analogy with biological genetics. The population is processed
through a loop that first ranks the solutions in terms of their per-
formance with regards to the objective function(s) and then subjects
some of the best performing solutions to a series of genetic processes
(e.g. mutation, crossover, etc.) to derive some new solutions for the
next generation to add to the best performing solutions of the cur-
rent generation, the best performing solutions are ranked, and so the
loop continues repeatedly generating new populations of solutions,
but always preserving the best performing solutions of the previous
generation. For this process to work effectively, each generation, i.e.,
all chromosomes (solutions) in the population need to be tested for
performance by a defined fitness test scoring assignment system.

The solutions in a particular generation are ranked using their
individual fitness scores. The solutions selected to be carried for-
ward to the next generation have the highest fitness scores. The
genetic algorithm loop continues through many iterations (gener-
ations) periodically finding better performing solutions (i.e., not all
generations outperform previous generations, but based on fitness
score selection, the highest ranking solution cannot performworse
than the previous generation). In some problems the algorithm
may lead to convergence to an optimal solution, in other more
complex problems, the GA may not find all solutions (i.e. there may
be several isolated minima in the solution space). In the second
situation a set of the highest-performing solutions are collected
after a set number of iterations (GA generations), or after a specified
period of computer processing time when no improved solutions
are found.

The MATLAB code listing for the single-objective GA used in this
study to solve deviated wellbore trajectories using the radius of
curvature method is included as Appendix C.

GA is applicable to many multi-objectives optimization prob-
lems, because it is able to cope with conflicts and/or non-linear
relationships among the multiple objectives, and provides a
robust set of high-performing (not necessarily the best) solutions
where multiple solutions exist (e.g., Yasari et al., 2013). The multi-
objective genetic algorithm (MOGA) follows the samemethodology
as a single objective function GA, but defines its fitness score
assignment system to involve all the objective functions involved.
MOGA algorithms typically apply a zonal ranking scheme by firstly
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identify the non-dominated solutions in each generation among all
solutions in that generation. Such non-dominated solutions are
assigned to rank one and are allocated the highest fitness score. All
solutions in the same generation, excluding those assigned to rank
one, are searched again to establish the non-dominating solutions
among that set of solutions, and those identified non-dominating
solutions in that sub-population of solutions are assigned to rank
two and are allocated a lower fitness score than those in rank two.
This process is repeated to establish multiple ranks, with the non-
dominated solutions included in each successive rank allocated a
lower fitness score than the previous, higher rank of solutions
identified. Eventually all solutions in a particular generationwill be
assigned a rank and appropriate fitness score. Selection of the
parents fromwhich the next generation of solutions are generated
in MOGA is based on this fitness score. All other steps in the MOGA
are the same in the GA.

A pseudo coding of the MOGA used in this study is as follows:
Procedure: MOGA 

Input: problem data, GA parameters 

Output: Pareto optimal solutions 

POP=Initialize(t=0);  

While (not terminating condition) do 

F=Objectives( POP ) ; Calculate Objective Functions

RANK=Evaluate( POP, F); Evaluation and Ranking by ftness score assignment routine 

PARETO=Pareto(POP, F); Create Pareto Optimal Solutions and Pareto Frontier 

PARENTS=Select (POP, RANK); Select Parents for next generation

POP=Xover(POP,PARENTS); Apply Crossover to select new high-performing solutions for next 
generation to replace low-ranking solutions

POP=Mut(POP,PARENTS); Apply Mutation to generate other new solutions from the parents and replace 
the modified solutions with them

End 

F=Objectives( POP ) ; Calculate Objective function values for solutions after V iterations or convergence

RANK=Evaluate( POP, F); Rank solutions according to fitness score 

PARETO=Pareto(POP, F); Select rank-one solutions 

Show PARETO  List rank-one solutions, Display graphically rank-one solutions for selected objective functions (i.e. 
2D or 3D plots)

End
The MATLAB code listing for the MOGA used in this study to
solve deviated wellbore trajectories using the radius of curvature
method is included as Appendix B.

5. Solution and results

Considering the two objective functions for the wellbore sce-
nario described above, and applying all specified constraints, the
MATLAB codes for the two-objective optimization using MOGA are
listed in Appendix B. These codes follow the sequence illustrated in
the flowchart depicted in Fig. 8.

For the solution, first we need the objective function that is
considered as follows:

OBJECTIVE FUNCTIONS ¼ fLength; Torqueg
Constrained to

C1;min <C1 <C1;max

C2;min <C2 <C2;max
C3;min <C3 <C3;max

TVDmin < TVD< TVDmax

where symbol C refers to Casing setting depth.
The optimization process for the scenario described seeks to

minimize the multi-objective function defined above. The MOGA
code commences with initializing. A random population consisting
of 100 solutions is generated that all are in feasible region (i.e.
satisfy the constraints and reach the specified well target). By
entering a loop, the objective functions for each solution are
calculated and based on the value of these functions, a fitness score
is allocated to each of them. The Pareto optimal solutions in each
generation are assigned to rank one. At least some of the parent
solutions for the next generation are selected. The selected parent
solutions are then adjusted by a cross-over operator and new
solutions are generated. The cross-over operator is designed to seek
new solutions that might have higher fitness scores than some of
the parents. The new improved solutions then replace low ranking
solutions with low fitness scores (Low ranking solutions are
replaced, so the best solutions are retained). The population then is
subjected to a mutation operator generating an additional number
of new solutions for the next generation. All parents undergo the
mutation operator. And the new solutions based on their fitness
compared to the parent fitness may be accepted or rejected. The
mutation step is the last step of any iteration. In the analysis con-
ducted for this study the process sequence or loop is repeated for
2000 iterations. Each step in an iteration described above is
executed as a MATLAB function. The algorithm also includes a
function to test the feasibility of each solution (i.e. does it reach the
target location and satisfy the constraints). This function is required
to prevent the inclusion of infeasible solutions in any generation of
solutions to be ranked. This function ensures all solutions in each
generation are in feasible region. Figs. 9 and 10 show the conver-
gence of two objective functions during optimization. The results of
the optimization for the defined wellbore scenario studied are lis-
ted in Table 2.



Fig. 8. Flow chart of process sequence applied in the multi-objective genetic algorithm (MOGA).
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6. Discussion

The wellbore problem analyzed in this study has very complex
nonlinear constraints. The objective functions themselves involve
17 variables. Maintaining all variables within their feasible regions
and satisfying all constraints during the optimization requires
additional coding to feed into the GA. Therefore, a customized
section of coding integrated with the MOGA is necessary to obtain
feasible and meaningful results. To achieve this goal, a constraint
function therefore forms part of the algorithm applied. This func-
tion is called from all MOGA elements to assess whether specific
solutions are feasible or not.

The initializing function ensures that the initial population is
all in the feasible region and satisfies all specified constraints. As a
further safeguard against infeasible solutions being propagated in
the ranking function, while ranking, any potential individual so-
lutions that are found not to satisfy all constraints, have their
fitness scores decreased to zero. This ensures that infeasible so-
lutions have no chance of selection for the next generation. The
main GA operators (i.e. cross over and mutation) while producing
new solution individuals are in communication with the
Fig. 9. Mean Torque versus Mean Length during Optimization with MOGA. The length
scale is in units of ft� 10�4. The Torque scale is in units of N.ft� 10�4.
constraint function in order to avoid producing unsatisfactory
solutions.
6.1. Genetic algorithm behavioral parameters

To be effective a GA needs to explore as much of the feasible
space as possible (i.e. adopt a broad focus) and then target optimal
zones within that space (i.e. adopt a more concentrated focus). A
GA's behavioral parameters (i.e., population size of each generation,
crossover probability and mutation probability) control it balance
between a broad focus and a more targeted one. Selecting and
modifying a GA's behavioral parameters are key issues that need to
be addressed to improve the effectiveness and timing of conver-
gence towards a useful set of optimal solutions (e.g., Gen and
Cheng, 2008, Li, 2010). The initial population size (i.e., number of
initial solutions that are generated at first by initializing function) is
set high enough so that a wide region in the feasible solution space
is encountered.

The crossover probability (PC) determines the fraction of the
population size (i.e. POP) in each iteration to produce new offspring
via a cross-over mechanism. This probability controls the number
(i.e., PC � POP) of individuals in an iteration to undergo the cross-
over operation. A high PC encourages better exploration of the
feasible solution space by the algorithm. This can avoid situations
where the algorithm lock into a local optimum, but fails to find
other better optima within the feasible solution space being
searched. However, if PC is too high it increases convergence time
while the algorithm searches many sub-optimal areas of the
feasible solution space.

The mutation probability (PM) determines the fraction of the
population for which new individuals are introduced via the mu-
tation method in each iteration of the algorithm. A low PM means
that many individual characteristics that would have beneficial
consequences are never evaluated. However, if PM is too high then
the next iteration differs too much in character from the previous
iteration and the algorithm fails to benefit from the good evolu-
tionary characteristics generated in previous iterations (Gen and
Cheng, 2008).

Our methodology applies a parameter adaption approach to the
values applied to the GA behavioral parameters mentioned above,
rather than tuning the algorithm to select specific values for each of
these behavioral parameters and then setting them as constant
values in the algorithm Lin et al., 2003. This means that the values
of the behavioral parameters applied in the algorithm vary as the
GA evolves through its iterations, i.e. it follows an evolutionary
process. Such variations facilitate optimum searching of the feasible



Fig. 10. Convergence of the two objective functions (Torque and Length) during MOGA optimization. Diagrams show the minimum values for torque and length found in each
iteration. On the left, the torque scale is in units of N.ft� 10�4. On the right, the length scale is in units of ft� 10�4.

Table 2
Key GA behavioral parameter values applied to four runs for which the two objective
function trends are illustrated in Fig. 11.

Run 1 Run 2 Run 3 Run 4

PC Values adapted as
iterations progress

0.2 0.5 0.8
PM 0.8 0.5 0.2
RM 0.5 0.5 0.5
Minimum torque

(N.ft) obtained
11,745 11,784 11,847 11,877

Minimum wellbore
length (ft) obtained

15,023 15,022 15,035 15,033
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space by the algorithm and a more rapid convergence trend. For
example, the mutation probability in the early iterations of the GA
needs to be high enough to find the zone of absolute optima and
then can be gradually decreased. On the other hand, the cross-over
probability should be increased to speed up the location of the
absolute optima, once the algorithm has located the optimal zone
in the feasible region. The parameter-adaption approach of our
methodology has three simple, but efficient, layers:

1. Applying variable values for cross-over probability and mutation
probability as the iterations progress. At first, PM is set to a high
value, such as 0.8 and PC is set to a low value, such as 0.2. The high
value of PM typically will locate the optimal zone in the feasible
region. PM then is decreased gradually, whereas PC is increased
gradually to find the absolute optimal points. The values used for
PM and PC are determined by the following relationships:

P ¼ 0:2þ 0:7� ðITERATION_NUMBER=MAX_ITERATIONÞ
C
PM ¼ 0:8� 0:7� ðITERATION_NUMBER=MAX_ITERATIONÞ

2. When no solution improvements are observed after a large
number of iterations, a sudden increase of PM is applied. When
the optimization trend does not show any improvement after a
large number of iterations, it is possible that the algorithm has
become stuck at some local optima. A drastic change in GA
behavioral-parameter values, in particular PM, is invoked to eject
the algorithm from such local minima. This is achieved in our
methodology by disturbing the layer 1 rule to significantly
increasing PM in such circumstances.

3. The mutation function includes a factor that controls the extent
of modification that is applied to individuals subjected to mu-
tation. This factor, termed “mutation rate” or RM in our meth-
odology is a value from zero to one. The mutation rate value for
the early iterations is typically set to be high, but once conver-
gence to the optimal zone in the feasible region is achieved, a
small change in an individual is more effective in finding in-
dividuals with better fitness scores. To achieve this, RM value is
adjusted in our methodology to become progressively lower as
iterations progress. The mutation rate for the analysis presented
here is adjusted by the following relationship as the algorithm
evolves through its iterations:

RM ¼ 0:6� 0:5� ðITERATION_NUMBER=MAX_ITERATIONÞ
Fig. 11 illustrates the GA evolutionary trends for the two

objective functions in four runs with different GA behavioral-



Fig. 11. Objective function trends compared for adaptive GA behavioral parameters versus constant-value GA behavioral parameters. The four runs illustrated were all conducted
using the same initial population, i.e. they all begin at the same points on the left sides of the two graphs. Run 1 (adaptive parameters) shows the best convergence because of the
high mutation probability applied in the initial iterations, and finds lower value optima for the objective functions because of the high cross-over probability applied in later it-
erations. Run 4 shows a smoother trend line and worst convergence towards its optima, and finds the least attractive optima of the four runs, because it applies the lowest mutation
probability (0.2). The torque scale is in units of N.ft� 10�4 and the length scale is in units of ft� 10�4.
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parameter setups. The benefit of using a parameter-adaption
approach in searching the feasible space and in enhancing the
convergence trend and convergence time is clear from the trends
shown in Fig. 11. Table 2 specifies the values of PC, PM and RM for
each run. . The best performing (lower) line in Fig. 11 represents
Run 1 (Table 2), the case using adaptive GA behavioral parameters.
The three other lines, Runs 2 to 4, use constant values for the GA
behavioral parameters, across all iterations. More rapid conver-
gence and better results are clearly achieved using adaptive
behavioral parameters.
Fig. 12. Pareto frontier obtained for the two objective functions, wellbore length and
torque, during MOGA, together with the results of single-objective function GA for the
wellbore length and torque functions for the wellbore scenario studied.
6.2. Multi-objective function optimization results

The complexity of the well path makes it impossible to observe
and characterize an explicit relationship between torque on the
drill string and well path parameters. However, it seems likely that
in feasible solutions with deeper kick-off (i.e. angle build-up)
points, a higher dog-leg severity is required to reach to the target
zone. This causes more friction torque on the drill string.

The Pareto frontier in typical two-objective optimization
problems, such as the one described here, show an ascendant
trend in one objective function's value versus a descendant trend
in the value of the other objective function. In the case studied,
the Pareto frontier established does not mean that the lowest
torque is along the longest well path, and the shortest well path
results in the highest torque on the drill string. The relationship
between those objective functions is non-linear and the GA
optimization has identified some high-performing samples that
define the Pareto frontier; there are likely to be other solutions,
not found by the algorithm, due to the behavioral constraints
imposed, that would extend, or provide finer-detail, along that
frontier.
The solutions that yield absolute minimum values of each
objective function should be subset of real Pareto optimal solu-
tion set. As shown in Fig. 12, the dots corresponding to single-
objective function GA optimization for the torque and the well-
bore length (triangle shaped) do extend the trace of the sample
of Pareto optimal solutions (spherical shaped) in both directions.
This lends weight to the conclusion that the dots related to single
objective function GA optimization shown in Fig. 12 do indeed
represent a subset of the real (complete) Pareto optimal solution
set.

By definition all the solutions along the Pareto frontier have
certain optimal characteristics (i.e., they are Pareto optimal solu-
tions). Once the Pareto frontier is defined the challenge is to



Table 3
Results of MOGA and results of previous studies on the same wellbore trajectory scenario.

GA design,
Shokir et al.
(2004)

PSO design, A.
Atashnezhad et al.
(2014)

This study

MOGA design (Pareto optimal solutions) Single
objective GA
on torque

Single
objective GA
on length

TMD (ft) 15,496 15,023 15,131 15,190 15,117 15,022 15,042 15,021 15,160 15,077 (15,228) 15,019
Torque (N.ft) e e 11,769 11,752 11,772 11,834 11,812 11,860 11,761 11,779 11,738 (12,257)
TVD (ft) e e 10,853 11,850 10,854 10,850 10,855 10,850 10,850 10,856 10,850 10,850
DKOP(ft) 987 1000 1000 1000 1000 1000 1000 1000 1000 1000 994 1000
DD (ft) 6804 7000 6998 6998 6998 6998 6998 6998 6998 6998 6968 70,000
DB (ft) 10,004 10,200 10,166 10,166 10,166 10,197 10,197 10,197 10,197 10,166 10,097 10,200
41 (degree) 13 10 10 10 10 10 10 10 10 10 10 10
42 (degree) 42 40 40 40 40 40 40 40 40 40 40 40
43(degree) 90 90 92 94 91 90 90 90 90 90 92 90
q1(degree) 279 270 270 270 270 270 270 270 270 270 270 270
q2 (degree) 279 280 280 280 280 280 280 280 280 280 280 280
q3 (degree) 275 275 280 280 280 280 280 278 278 280 280 276
q4 (degree) 332 331 331 331 331 333 331 333 333 331 330 340
q5 (degree) 334 340 331 331 331 333 331 333 333 331 330 340
q6 (degree) 335 355 357 357 357 357 357 357 357 357 359 356
T1 (�/100 ft) 1.675 0.829 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.82 0.83
T3 (�/100 ft) 1.431 1.666 1.65 1.65 1.65 1.66 1.66 1.66 1.66 1.65 1.62 1.68
T5 (�/100 ft) 2.413 3.243 3.23 3.23 3.23 3.38 3.38 3.38 3.38 3.23 3.00 3.31
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identify which one of those Pareto optimal solutions should be
selected for the well design. Analyzing the cost and time to achieve
each Pareto optimum solution is one way to discriminate, but that
is beyond the scope of this study.

Table 3 shows selected Pareto optimal solutions from MOGA
together with the results of single-objective function GA for the
wellbore length and torque functions for the wellbore scenario
studied. Whereas it seems likely that in the single-objective
function GA optimum solutions the lowest torque is along the
well path that has the lowest dog leg severities, and the lowest
length of the wellbore has the highest dog leg severities, it is not
so clear cut for solutions along the Pareto frontier. There may be
other geometric factors, in addition to dog-leg severity, that are
influencing the wellbore length versus torque relationship.

7. Conclusion

This study has developed, applied and analyzed a two-objective
function optimization model for a complex directional wellbore
trajectory striving to minimize two conflicting objective functions
of measured wellbore length and drilling torque, subject to multi-
ple constraints. A customized multi-objective genetic algorithm
(MOGA), with the logic clearly described and the MATLAB code
transparently presented in Appendices B and C provides an
impressive range of Pareto optimal solutions for this wellbore
scenario. Rapid convergence and the high-performing results
compared to previously-published, single-objective function
studies of the same complex, deviated wellbore scenario highlight
the efficiency of theMOGA proposed. The algorithm ensures that all
constraints are satisfied in the selected optimal solutions. The
following specific conclusions can been drawn related to the
wellbore trajectory scenario studied:

➢ There is no explicit relationship between the wellbore length
and the torque on the drill string. This means that solutions
providing the minimum measured depth for the well do not
necessarily provide the lowest torque on the drill string, and
vice versa.

➢ The methodology used in this study to calculate torque on the
drill string is one of several that could be used. As torque is a
complex function dependent on many variables, it is clear that
other methodologies for calculating torque would likely lead to
different results. Such detailed analysis of torque on the drill
string goes beyond the scope of this work and demands its own
comprehensive study. This study is primarily concerned with
demonstrating the merits of two-objective function genetic
optimization.

➢ Considering the parameters influencing well-trajectory
design, the results of the optimization scenario presented
are consistent with the conclusion that torque is most
significantly affected by the dog-leg severity of any specific
trajectory; i.e., higher dog leg severity causes higher torque on
the drill string.

➢ When applying well path optimization to specific target loca-
tions it is often important to consider other factors in addition
to wellbore length and torque. For instance, wellbore tortu-
osity will influence the ability to run specific completion de-
signs and the cost of the well completion. Minimizing
combined drilling and completion costs is another common
optimization target for specific operations. In some cases these
additional issues may be considered as optimization con-
straints (e.g. setting casing above or below certain problem
geological horizons). Our future research will therefore be
focused on developing our proposed MOGA to incorporate
additional objectives such as well tortuosity and drilling and
completion costs.
7.1. Concerning the GA and MOGA

➢ GA and, therefore, MOGA are powerful algorithms for searching
the feasible solution space defined by objective functions and
for defining Pareto optimal solutions for them when more than
one objective function is involved. This approach is well suited
to drilling optimization challenges.

Finally for future field development for more difficult wells, the
provided algorithm can be used as well as for the wellbore scenario
evaluated simply by changing the objective function and con-
straints function only.
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Nomenclature
Definitions of wellbore trajectory variables (modified after Shokir
et al., 2004)
41,42,43 First, second and third hold angles, degrees
q1 Azimuth angle at kick off point, degrees
q2 Azimuth angle at end of first build, degrees
q3 Azimuth angle at end of first hold section, degrees
q4 Azimuth angle at end of second build or drop, degrees
q5 Azimuth angle at end of second hold section, degrees
q6 Azimuth angle at end of third build portion, degrees
T1 Dogleg severities of first build portion, �/100 feet
T2 Dogleg severity of first hold portion, �/100 feet
T3 Dogleg severity of second build or drop portion, �/100 feet
T4 Dogleg severity of second hold or drop portion, �/100 feet
T5 Dogleg severity of third build or drop portion, �/100 feet
TMD True measured depth
TVD True vertical depth
DKOP Depth of kick of point
DB True vertical depth of the well at the end of drop-off

section (top of third build section), feet
DD True vertical depth of the well at the top of drop-off

section (top of second build section), feet
HD lateral length (horizontal length), feet
P1, P2 Two survey points
e1, e2 Unit vectors in the direction of the wellbore
F1 Axial load at the bottom of element
F2 Axial load at the top of element
b Total angle change
B Buoyancy factor
m Friction factor
w Weight of unit length, kN/feet
r Radius of the pipes, feet
DL Interval length
PC Cross over probability
PM Mutation probability
RM Mutation rate

Appendix A

Detailed calculation of the well length and the torque on the
drill string for case study of this paper.

Given the well is consist of 7 section (Vertical section, First build
section, First hold, Second build, Second hold, Third build, Hori-
zontal section), for each section, the length and the torque is
separately calculated. First for the length:

DL1¼DKOP

DL2¼D1¼R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2�q1Þ2 sin4

�
41þ40

2

�
þð41þ40Þ

s
;ð40¼0Þ

DL4¼D3¼R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq4�q3Þ2 sin4

�
42þ41

2

�
þð42þ41Þ

s

DL6¼D5¼R5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq5�q6Þ2 sin4

�
43þ42

2

�
þð43þ42Þ

s

DL3¼D2¼DD�DKOP�D1�ðsin41�sin40Þ=ðð41�40Þ�cos41Þ
DL5¼D4¼DB�DD�D3�ðsin42�sin41Þ=ðð42�41Þ�cos42Þ
DL7¼HD
The torque calculation starts at the bottom of the drill string and
proceeds stepwise upward. First the axial loading at the bottom of
each section is calculated. It is assumed that there is no axial
movement (just rotating) and no weight on bit (F7 ¼ 0).

F7 ¼ 0

F6 ¼ F7 þ BwDL7 cos 43 ¼ BwDL7 cos a3

F5 ¼ F6 þ BwDL6

�
sin 43 � sin 42

43 � 42

�

F4 ¼ F5 þ BwDL5 cos 42

F3 ¼ F4 þ BwDL4

�
sin 42 � sin 41

42 � 41

�

F2 ¼ F3 þ BwDL3 cos 41

F1 ¼ F2 þ BwDL2

�
sin 40 � sin 41

40 � 41

�
; ð40 ¼ 0Þ

Now, the torque for each section is calculated. For build and drop
sections, the total angle change (b) is required.

T7 ¼ mrwDL7 sin 43

cos b6 ¼ sin 43 sin 42 cosðq5 � q6Þ þ cos q5 cos q6

T6 ¼ mrF6b6

T5 ¼ mrwDL5 sin 42

cos b4 ¼ sin 42 sin 41 cosðq3 � q4Þ þ cos q3 cos q4

T4 ¼ mrF4b4

T3 ¼ mrwDL3 sin 41

cos b2 ¼ sin 41 sin 40 cosðq1 � q2Þ þ cos q1 cos q2
¼ cos 41 cos 42; ð40 ¼ 0Þ

T2 ¼ mrF2b2

T1 ¼ mrwDL1 sin 40; ð40 ¼ 0Þ
In the calculations, the buoyancy factor (B), weight of unit length

of the pipes (w), friction factor (m) and radius of the pipes (r) are
assumed to be 0.7, 0.3 kN/ft, 0.2, 0.1 ft, respectively.
Appendix B

MATLAB code listing for MOGA to solve deviated wellbore tra-
jectories using the radius of curvature method.
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Appendix C

MATLAB code listing for single objective GA to solve deviated
wellbore trajectories using the radius of curvature method.
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